[1]
A. Samouëlian, I. Cousin, A. Tabbagh, A. Bruand, and G. Richard, Electrical resistivity survey in soil science: a review, Soil and Tillage Research, vol. 83, pp.173-193, (2005).
DOI: 10.1016/j.still.2004.10.004
Google Scholar
[2]
Z. S. Abu-Hassanein, C. H. Benson, and L. R. Blotz, Electrical resistivity of compacted clays, Journal of Geotechnical Engineering - ASCE, vol. 122, pp.397-406, (1996).
DOI: 10.1061/(asce)0733-9410(1996)122:5(397)
Google Scholar
[3]
Y. Erzin, B. H. Rao, A. Patel, S. D. Gumaste, and D. N. Singh, Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity, International Journal of Thermal Sciences, vol. 49, pp.118-130, (2010).
DOI: 10.1016/j.ijthermalsci.2009.06.008
Google Scholar
[4]
R. J. Kalinski and W. E. Kelly, Estimating water content of soils from electrical resistivity, Geotechnical Testing Journal, vol. 16, pp.323-329, (1993).
DOI: 10.1520/gtj10053j
Google Scholar
[5]
R. J. Kalinski and W. E. Kelly, Electrical-resistivity measurements for evaluating compacted-soil liners, Journal of Geotechnical Engineering - ASCE, vol. 120, pp.451-457, (1994).
DOI: 10.1061/(asce)0733-9410(1994)120:2(451)
Google Scholar
[6]
W. J. McCarter, Electrical Resistivity Characteristics of Compacted Clays, Geotechnique, vol. 34, pp.263-267, (1984).
DOI: 10.1680/geot.1984.34.2.263
Google Scholar
[7]
F. Ozcep, O. Tezel, and M. Asci, Correlation between electrical resistivity and soil-water content: Istanbul and Golcuk, International Journal of Physical Sciences, vol. 4, pp.362-365, (2009).
Google Scholar
[8]
F. Ozcep, E. Yildirim, O. Tezel, M. Asci, and S. Karabulut, Correlation between electrical resistivity and soil-water content based artificial intelligent techniques, International Journal of Physical Sciences, vol. 5, pp.47-56, (2010).
Google Scholar
[9]
A. Pozdnyakova and L. Pozdnyakova, Electrical fields and soil properties, Proceedings of 17th World Congress of Soil Science, Thailand, 14-21 August, vol. paper 1558, (2002).
Google Scholar
[10]
L. Pozdnyakova, A. Pozdnyakov, and R. Zhang, Application of geophysical methods to evaluate hydrology and soil properties in urban areas, Urban Water, vol. 3, pp.205-216, (2001).
DOI: 10.1016/s1462-0758(01)00042-5
Google Scholar
[11]
B. F. Schwartz, M. E. Schreiber, and T. Yan, Quantifying field-scale soil moisture using electrical resistivity imaging, Journal of Hydrology, vol. 362, pp.234-246, (2008).
DOI: 10.1016/j.jhydrol.2008.08.027
Google Scholar
[12]
Y. Son, M. Oh, and S. Lee, Estimation of soil weathering degree using electrical resistivity, Environmental Earth Sciences, vol. 59, pp.1319-1326, (2009).
DOI: 10.1007/s12665-009-0119-0
Google Scholar
[13]
S. Sreedeep, A. C. Reshma, and D. N. Singh, Generalized relationship for determining soil electrical resistivity from its thermal resistivity, Experimental Thermal and Fluid Science, vol. 29, pp.217-226, (2005).
DOI: 10.1016/j.expthermflusci.2004.04.001
Google Scholar
[14]
G. L. Yoon and J. B. Park, Sensitivity of leachate and fine contents on electrical resistivity variations of sandy soils, Journal of Hazardous Materials, vol. 84, pp.147-161, (2001).
DOI: 10.1016/s0304-3894(01)00197-2
Google Scholar
[15]
P. H. Giao, S. G. Chung, D. Y. Kim, and H. Tanaka, Electric imaging and laboratory resistivity testing for geotechnical investigation of Pusan clay deposits, Journal of Applied Geophysics, vol. 52, pp.157-175, (2003).
DOI: 10.1016/s0926-9851(03)00002-8
Google Scholar