[1]
Y. Fujii, Measurement of steep impulse response of a force transducer, Meas. Sci. Technol. 14(1), 65-69 (2003).
DOI: 10.1088/0957-0233/14/1/310
Google Scholar
[2]
Y. Fujii, A method for calibrating force transducers against oscillation force, Meas. Sci. Technol. 14(8), 1259-1264 (2003).
DOI: 10.1088/0957-0233/14/8/310
Google Scholar
[3]
Y. Fujii, Proposal for a step response evaluation method for force transducers, Meas. Sci. Technol. 14(10), 1741-1746 (2003).
DOI: 10.1088/0957-0233/14/10/301
Google Scholar
[4]
Y. Fujii and T. Yamaguchi, Method for evaluating material viscoelasticity, Rev. Sci. Instrum. 75(1), 119-123 (2004).
Google Scholar
[5]
Y. Fujii and T. Yamaguchi, Proposal for material viscoelasticity evaluation method under impact load , Journal of Materials Science 40(18), 4785 – 4790 (2005).
DOI: 10.1007/s10853-005-2004-x
Google Scholar
[6]
Y. Fujii and D.W. Shu, Impact force measurement of an actuator arm of a hard disk drive, Int. J. Impact Eng. 35(2), 980-108 (2008).
DOI: 10.1016/j.ijimpeng.2006.12.007
Google Scholar
[7]
Y. Fujii and T. Yamaguchi, Optical method for evaluating material friction, Meas. Sci. Technol. 15(10), 1971-1976 (2004).
DOI: 10.1088/0957-0233/15/10/004
Google Scholar
[8]
Y. Fujii, Method for Measuring Transient Friction Coefficients for Rubber Wiper Blades on Glass Surface, Tribology International 41(1), 17-23 (2008).
DOI: 10.1016/j.triboint.2007.04.003
Google Scholar
[9]
Y. Fujii, T. Yamaguchi and J. Valera, Impact response measurement of a human arm, Experimental Techniques 30(3), 64-68 (2006).
DOI: 10.1111/j.1747-1567.2006.00045.x
Google Scholar
[10]
Y. Fujii and T. Yamaguchi, Method of evaluating the force controllability of human finger, IEEE Trans. Instrum. Meas. 55(4), 1235-1241 (2006).
DOI: 10.1109/tim.2006.877720
Google Scholar
[11]
Y. Fujii and K. Shimada, Instrument for measuring the mass of an astronaut, Meas. Sci. Technol. 17(10), 2705-2710 (2006).
DOI: 10.1088/0957-0233/17/10/024
Google Scholar
[12]
Y. Fujii and K. Shimada, The space scale: An Instrument for astronaut mass measurement, Trans. Jpn. Soc. Aeronaut. Space Sci. 50(170), 251-257 (2008).
DOI: 10.2322/tjsass.50.251
Google Scholar
[13]
Y. Fujii, Optical method for accurate force measurement: dynamic response evaluation of an impact hammer, Optical Engineering 45(2), 023002-1-7 (2006).
DOI: 10.1117/1.2170713
Google Scholar
[14]
Y. Fujii, Method for generating and measuring the micro-Newton level forces, Mech. Syst. Signal Pr. 20(6), 1362-1371 (2006).
DOI: 10.1016/j.ymssp.2005.01.001
Google Scholar
[15]
Y. Fujii, Microforce materials tester, Rev. Sci. Instrum. 76(6), 065111-1-7 (2005).
Google Scholar
[16]
Y. Fujii, Microforce materials tester based on the levitation mass method, Meas. Sci. Technol. 18(6), 1678-1682 (2007).
DOI: 10.1088/0957-0233/18/6/s02
Google Scholar
[17]
Y. Fujii, Method of generating and measuring static small force using down-slope component of gravity, Rev. Sci. Instrum. 78(6), 066104-1-3 (2007).
DOI: 10.1063/1.2746823
Google Scholar
[18]
Y. Fujii, Measurement of force acting on a moving part of a pneumatic linear bearing, Rev. Sci. Instrum. 74(6), 3137-3141 (2003).
DOI: 10.1063/1.1574396
Google Scholar
[19]
Y. Fujii, Frictional characteristics of an aerostatic linear bearing, Tribology International 39(9), 888-896 (2006).
DOI: 10.1016/j.triboint.2005.07.040
Google Scholar
[20]
Y. Fujii, An optical method for evaluating frictional characteristics of linear bearings, Optics and Lasers in Engineering 42(5), 493-501 (2004).
DOI: 10.1016/j.optlaseng.2004.03.006
Google Scholar
[21]
Y. Fujii, Pendulum for precision force measurement, Rev. Sci. Instrum. 77(3), 035111-1-5 (2006).
Google Scholar
[22]
Y. Fujii and J. Valera, Impact force measurement using an inertial mass and a digitizer, Meas. Sci. Technol. 17(4), 863-868 (2006).
DOI: 10.1088/0957-0233/17/4/035
Google Scholar
[23]
Y. Fujii, Impact response measurement of an accelerometer, Mech. Syst. Signal Pr. 21(5), 2072-2079 (2007).
Google Scholar
[24]
Y. Fujii, Measurement of the electrical and mechanical responses of a force transducer against impact forces, Rev. Sci. Instrum. 77(8), 085108-1-5 (2006).
DOI: 10.1063/1.2745997
Google Scholar
[25]
Y. Fujii, Method for correcting the effect of the inertial mass on dynamic force measurements, Meas. Sci. Technol. 18(5), N13-N20 (2007).
DOI: 10.1088/0957-0233/18/5/n01
Google Scholar
[26]
R. Kumme and M Dixon, The results of comparisons between two different dynamic force measurement systems, Measurement 10(3), 140-144 (1992).
DOI: 10.1016/0263-2241(92)90010-2
Google Scholar
[27]
R. Kumme, Investigation of the comparison method for the dynamic calibration of force transducers, Measurement 23(4), 239-245 (1998).
DOI: 10.1016/s0263-2241(98)00027-x
Google Scholar
[28]
Y-K. Park, R. Kumme and D-I. Kang, Dynamic investigation of a three-component force-moment sensor, Meas. Sci. Technol. 13(5), 654-659 (2002).
DOI: 10.1088/0957-0233/13/5/302
Google Scholar
[29]
Y-K. Park, R. Kumme and D-I. Kang, Dynamic investigation of a binocular six-component force-moment sensor, Meas. Sci. Technol. 13(8), 1311-1318 (2002).
DOI: 10.1088/0957-0233/13/8/320
Google Scholar
[30]
Koichi Maru, Kohjiro Kobayashi and Yusaku Fujii, Multi-point differential laser Doppler velocimeter using arryayed waveguide gratings with small wavelength sensitivity, Optics Express. 18(1), 301-308(2010).
DOI: 10.1364/oe.18.000301
Google Scholar
[31]
Koichi Maru and Yusaku Fujii, Wavelength-insensitive laser Doppler velocimeter using beam position shift induced by Mach-Zehnder interferometers, Optics Express. 17(20), 17441-17449(2009).
DOI: 10.1364/oe.17.017441
Google Scholar
[32]
Koichi Maru and Yusaku Fujii, Integrated Wavelength-Insensitive Differential Laser Doppler Velocimeter Using Planar Lightwave Ciruit, Journal of Lightwave Technology. 27(22), 5078-5083(2009).
DOI: 10.1109/jlt.2009.2027214
Google Scholar