Precision Force Measurement Using the Levitation Mass Method (LMM)

Article Preview

Abstract:

This paper reviewed the present status and the future prospects of a method for precision mass and force measurement based on levitation mass method (LMM). The LMM has been proposed and improved by the author The mass which levitated using a pneumatic linear bearing in LMM is used to producte a inertial force which used as the reference force applied to the objects under test, such as to force sensor calibration, material and structure test. The inertial force is calibrated only from Doppler shift frequency. The stability of laser’s wavelength has improved in the LMM. The futhure work and the method to improve the precision have described.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-51

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Fujii, Measurement of steep impulse response of a force transducer, Meas. Sci. Technol. 14(1), 65-69 (2003).

DOI: 10.1088/0957-0233/14/1/310

Google Scholar

[2] Y. Fujii, A method for calibrating force transducers against oscillation force, Meas. Sci. Technol. 14(8), 1259-1264 (2003).

DOI: 10.1088/0957-0233/14/8/310

Google Scholar

[3] Y. Fujii, Proposal for a step response evaluation method for force transducers, Meas. Sci. Technol. 14(10), 1741-1746 (2003).

DOI: 10.1088/0957-0233/14/10/301

Google Scholar

[4] Y. Fujii and T. Yamaguchi, Method for evaluating material viscoelasticity, Rev. Sci. Instrum. 75(1), 119-123 (2004).

Google Scholar

[5] Y. Fujii and T. Yamaguchi, Proposal for material viscoelasticity evaluation method under impact load , Journal of Materials Science 40(18), 4785 – 4790 (2005).

DOI: 10.1007/s10853-005-2004-x

Google Scholar

[6] Y. Fujii and D.W. Shu, Impact force measurement of an actuator arm of a hard disk drive, Int. J. Impact Eng. 35(2), 980-108 (2008).

DOI: 10.1016/j.ijimpeng.2006.12.007

Google Scholar

[7] Y. Fujii and T. Yamaguchi, Optical method for evaluating material friction, Meas. Sci. Technol. 15(10), 1971-1976 (2004).

DOI: 10.1088/0957-0233/15/10/004

Google Scholar

[8] Y. Fujii, Method for Measuring Transient Friction Coefficients for Rubber Wiper Blades on Glass Surface, Tribology International 41(1), 17-23 (2008).

DOI: 10.1016/j.triboint.2007.04.003

Google Scholar

[9] Y. Fujii, T. Yamaguchi and J. Valera, Impact response measurement of a human arm, Experimental Techniques 30(3), 64-68 (2006).

DOI: 10.1111/j.1747-1567.2006.00045.x

Google Scholar

[10] Y. Fujii and T. Yamaguchi, Method of evaluating the force controllability of human finger, IEEE Trans. Instrum. Meas. 55(4), 1235-1241 (2006).

DOI: 10.1109/tim.2006.877720

Google Scholar

[11] Y. Fujii and K. Shimada, Instrument for measuring the mass of an astronaut, Meas. Sci. Technol. 17(10), 2705-2710 (2006).

DOI: 10.1088/0957-0233/17/10/024

Google Scholar

[12] Y. Fujii and K. Shimada, The space scale: An Instrument for astronaut mass measurement, Trans. Jpn. Soc. Aeronaut. Space Sci. 50(170), 251-257 (2008).

DOI: 10.2322/tjsass.50.251

Google Scholar

[13] Y. Fujii, Optical method for accurate force measurement: dynamic response evaluation of an impact hammer, Optical Engineering 45(2), 023002-1-7 (2006).

DOI: 10.1117/1.2170713

Google Scholar

[14] Y. Fujii, Method for generating and measuring the micro-Newton level forces, Mech. Syst. Signal Pr. 20(6), 1362-1371 (2006).

DOI: 10.1016/j.ymssp.2005.01.001

Google Scholar

[15] Y. Fujii, Microforce materials tester, Rev. Sci. Instrum. 76(6), 065111-1-7 (2005).

Google Scholar

[16] Y. Fujii, Microforce materials tester based on the levitation mass method, Meas. Sci. Technol. 18(6), 1678-1682 (2007).

DOI: 10.1088/0957-0233/18/6/s02

Google Scholar

[17] Y. Fujii, Method of generating and measuring static small force using down-slope component of gravity, Rev. Sci. Instrum. 78(6), 066104-1-3 (2007).

DOI: 10.1063/1.2746823

Google Scholar

[18] Y. Fujii, Measurement of force acting on a moving part of a pneumatic linear bearing, Rev. Sci. Instrum. 74(6), 3137-3141 (2003).

DOI: 10.1063/1.1574396

Google Scholar

[19] Y. Fujii, Frictional characteristics of an aerostatic linear bearing, Tribology International 39(9), 888-896 (2006).

DOI: 10.1016/j.triboint.2005.07.040

Google Scholar

[20] Y. Fujii, An optical method for evaluating frictional characteristics of linear bearings, Optics and Lasers in Engineering 42(5), 493-501 (2004).

DOI: 10.1016/j.optlaseng.2004.03.006

Google Scholar

[21] Y. Fujii, Pendulum for precision force measurement, Rev. Sci. Instrum. 77(3), 035111-1-5 (2006).

Google Scholar

[22] Y. Fujii and J. Valera, Impact force measurement using an inertial mass and a digitizer, Meas. Sci. Technol. 17(4), 863-868 (2006).

DOI: 10.1088/0957-0233/17/4/035

Google Scholar

[23] Y. Fujii, Impact response measurement of an accelerometer, Mech. Syst. Signal Pr. 21(5), 2072-2079 (2007).

Google Scholar

[24] Y. Fujii, Measurement of the electrical and mechanical responses of a force transducer against impact forces, Rev. Sci. Instrum. 77(8), 085108-1-5 (2006).

DOI: 10.1063/1.2745997

Google Scholar

[25] Y. Fujii, Method for correcting the effect of the inertial mass on dynamic force measurements, Meas. Sci. Technol. 18(5), N13-N20 (2007).

DOI: 10.1088/0957-0233/18/5/n01

Google Scholar

[26] R. Kumme and M Dixon, The results of comparisons between two different dynamic force measurement systems, Measurement 10(3), 140-144 (1992).

DOI: 10.1016/0263-2241(92)90010-2

Google Scholar

[27] R. Kumme, Investigation of the comparison method for the dynamic calibration of force transducers, Measurement 23(4), 239-245 (1998).

DOI: 10.1016/s0263-2241(98)00027-x

Google Scholar

[28] Y-K. Park, R. Kumme and D-I. Kang, Dynamic investigation of a three-component force-moment sensor, Meas. Sci. Technol. 13(5), 654-659 (2002).

DOI: 10.1088/0957-0233/13/5/302

Google Scholar

[29] Y-K. Park, R. Kumme and D-I. Kang, Dynamic investigation of a binocular six-component force-moment sensor, Meas. Sci. Technol. 13(8), 1311-1318 (2002).

DOI: 10.1088/0957-0233/13/8/320

Google Scholar

[30] Koichi Maru, Kohjiro Kobayashi and Yusaku Fujii, Multi-point differential laser Doppler velocimeter using arryayed waveguide gratings with small wavelength sensitivity, Optics Express. 18(1), 301-308(2010).

DOI: 10.1364/oe.18.000301

Google Scholar

[31] Koichi Maru and Yusaku Fujii, Wavelength-insensitive laser Doppler velocimeter using beam position shift induced by Mach-Zehnder interferometers, Optics Express. 17(20), 17441-17449(2009).

DOI: 10.1364/oe.17.017441

Google Scholar

[32] Koichi Maru and Yusaku Fujii, Integrated Wavelength-Insensitive Differential Laser Doppler Velocimeter Using Planar Lightwave Ciruit, Journal of Lightwave Technology. 27(22), 5078-5083(2009).

DOI: 10.1109/jlt.2009.2027214

Google Scholar