[1]
S. J. Britvec. The Stability of Elastic Systems, Pergamon Press: New York, (1973).
Google Scholar
[2]
A. Chajes. Principles of Structural Stability Theory, Prentice-Hall, Inc, Englewood Cliffs: New Jersey, (1974).
Google Scholar
[3]
Y. Ben-Haim, I. Elishakoff. Convex Models of Uncertainty in Applied Mechanics, Elsevier: Amsterdam, (1990).
Google Scholar
[4]
I. Elishakoff, Y. W. Li, J. H. Starnes. A deterministic method to predict the effect of unknown-but-bounded elastic moduli on the buckling of composite structures. Computer Methods in Applied Mechanics and Engineering 1994; 111: 155-167.
DOI: 10.1016/0045-7825(94)90043-4
Google Scholar
[5]
I. Elishakoff, P. Eliseeff, S. Glegg. Convex modelling of material uncertainty in vibrations of a viscoelastic structure. AIAA Journal 1994; 32: 843-849.
Google Scholar
[6]
Z. P. Qiu, S. H. Chen, Elishakoff I. Natural frequencies of structures with uncertain but non-random parameters. Journal of Optimization Theory and Applications 1995; 86: 669-683.
DOI: 10.1007/bf02192164
Google Scholar
[7]
Z. P. Qiu, I. Elishakoff. Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis. Computer Methods in Applied Mechanics and Engineering 1998; 152: 361-372.
DOI: 10.1016/s0045-7825(96)01211-x
Google Scholar
[8]
Z. P. Qiu, P. C. Mueller, A. Frommer. Stability robustness bounds for linear state-space models with structured uncertainty based on ellipsoidal set-theoretic approach. Mathematics and Computers in Simulation 2001; 56: 35-53.
DOI: 10.1016/s0378-4754(00)00200-7
Google Scholar
[9]
Z. P. Qiu, P. C. Mueller, A. Frommer. An approximate method for the standard interval eigenvalue problem of real non-symmetric interval matrices. Communications in Numerical Methods in Engineering 2001; 17: 239-251.
DOI: 10.1002/cnm.401
Google Scholar
[10]
Z. P. Qiu, I. Elishakoff, J. H. Strarnes. The bound set of possible eigenvalues of structures with uncertain but non-random parameters. Chaos, Solitons and Fractals 1996; 7: 1845-1857.
DOI: 10.1016/s0960-0779(96)00041-0
Google Scholar
[11]
S. H. Chen, X. W. Yang. Interval finite element method for beam structures. Finite Element in Analysis and Design 2000; 34: 75-88.
DOI: 10.1016/s0168-874x(99)00029-3
Google Scholar
[12]
R. L. Mullen, R. L. Muhanna. Bounds of structural response for all possible loading combinations. Structural Engineering (ASCE) 1999; 125: 98-106.
DOI: 10.1061/(asce)0733-9445(1999)125:1(98)
Google Scholar
[13]
C. P. Pantelides, S. Ganerli. Comparison of fuzzy set and convex model theories in structural design. Mechanical Systems and Processing 2001; 15(3): 499 -511.
DOI: 10.1006/mssp.2000.1379
Google Scholar
[14]
S. Ganzerli, C. P. Pantelides. Optimum structural design via convex model superposition. Computers and Structures 2000; 74(6): 639-647.
DOI: 10.1016/s0045-7949(99)00077-2
Google Scholar
[15]
S. Ganzerli, C. P. Pantelides. Load and resistance convex models for optimum design. Structural Optimization 1999; 17(4): 259 -268.
DOI: 10.1007/bf01207002
Google Scholar
[16]
R. E. Moore. Methods and Applications of Interval Analysis, SIAM: Philadephia, (1979).
Google Scholar
[17]
G. Alefeld, Herzberger J. Introduction to Interval Computations, Academic Press: New York, (1983).
Google Scholar
[18]
G. Genta. Vibration of Structures and Machines: Practical Aspects. 3rd edition, Springer-Verlag: New York, (1999).
Google Scholar
[19]
H. C. Hu. The Theory of Natural Vibration of MDOF Structures, Science Press of China, 1987 (in Chinese).
Google Scholar
[20]
P. Lancaster. Theory of Matrices, Academic Press: New York, (1985).
Google Scholar
[21]
J. N. Franklin. Matrix Theory. Prentice-Hall, Inc, Englewood Cliffs: New Jersey, (1968).
Google Scholar