Oxygen Vacancy Comparisons for 3Y - TZP Sintered in Air and Argon Gas Atmosphere

Article Preview

Abstract:

In this study oxygen vacancy concentration on 3Y TZP ceramics was compared for sintered and aged samples in air and argon gas atmosphere. The sintering study was conducted over the temperature range 1250°C - 1500°C. Photoluminescence (PL) spectrums of the sintered samples were taken by laser with excitation wavelength 325nm. Two distinctive sharp and broad peaks were observed for the wavelength ~ 615 nm and ~ 580 600nm. The sample sintered at 1250 °C showed higher oxygen vacancy in both atmospheres. At the same time, argon gas sintered sample showed higher oxygen vacancy than air sintered sample. The emission band blue shifted after 1 h ageing for the sample sintered in 1500 °C in both atmospheres. XRD results on 1 hour aged sample sintered in argon gas atmosphere showed higher monoclinic phase than air sintered sample.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

173-176

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Nettleship, R. Stevens, Tetragonal zirconia polycrystal (TZP)—A review, International Journal of High Technology Ceramics, 3(1) (1987)1-32.

DOI: 10.1016/0267-3762(87)90060-9

Google Scholar

[2] X. J. Jin, Martensitic transformation in zirconia containing ceramics and its applications, Current Opinion in Solid State and Materials Science, 9(6) (2005) 313-318.

DOI: 10.1016/j.cossms.2006.02.012

Google Scholar

[3] J. Helmer, T. Driskell, Research on bioceramics. in Symp. on Use of Ceramics as Surgical Implants. South Carolina (USA): Clemson University. (1969).

Google Scholar

[4] P. Christel et al., Biomechanical Compatibility and Design of Ceramic Implants for Orthopedic Surgery, Annals of the New York Academy of Sciences, 523 (1988) 234-256.

DOI: 10.1111/j.1749-6632.1988.tb38516.x

Google Scholar

[5] R. Stevens, Zirconia and Zirconia Ceramics, Written for Magnesium Elektron by1986, UK: Magnesium Elektron, ltd. 1-56.

Google Scholar

[6] K. Kobayashi, H. Kuwajima,T. Masaki, Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing, Solid State Ionics, 3(1981) 489-493.

DOI: 10.1016/0167-2738(81)90138-7

Google Scholar

[7] S. Lawson, Environmental degradation of zirconia ceramics, Journal of the European Ceramic Society, 15 (1995) 485-502.

DOI: 10.1016/0955-2219(95)00035-s

Google Scholar

[8] T. Lepisto, T. Mantyla, A Model for Structural Degradation of Y-TZP Ceramics in Humid Atmosphere, Ceram. Eng. Sci. Proc., 10 (1989) 658-667.

Google Scholar

[9] J. Livage, K. Doi, C. Mazieres, Nature and Thermal Evolution of Amorphous Hvdrated Zirconium Oxide, Journal of the American Ceramic Society, 51 (1968) 349-353.

DOI: 10.1111/j.1151-2916.1968.tb15952.x

Google Scholar

[10] S. Paje, J. Llopis, Photoluminescence decay and time-resolved spectroscopy of cubic yttria-stabilized zirconia, Applied Physics A: Materials Science & Processing, 59 (1994) 569-574.

DOI: 10.1007/bf00331913

Google Scholar

[11] N.G. Petrik, D.P. Taylor, T.M. Orlando, Laser-stimulated luminescence of yttria-stabilized cubic zirconia crystals, Journal of Applied Physics, 85 (1999) 6770-6776.

DOI: 10.1063/1.370192

Google Scholar

[12] H. Toraya, M. Yoshimura, S. Somiya, Quantitative Analysis of Monoclinic-Stabilized Cubic ZrO2 Systems by X-Ray Diffraction, Journal of the American Ceramic Society, 67 (9) (1984) C-183-C-184.

DOI: 10.1111/j.1151-2916.1984.tb19614.x

Google Scholar

[13] B. Králik, E.K. Chang, S.G. Louie, Structural properties and quasiparticle band structure of zirconia, Physical Review B, 57 (1998) 7027-7036.

DOI: 10.1103/physrevb.57.7027

Google Scholar

[14] G. Stapper, Study of structural and electronic properties of yttria-stabilized cubic zirconia, Physical Review B, 59 (1999) 797-810.

DOI: 10.1103/physrevb.59.797

Google Scholar

[15] S. Paje, J. Llopis, Photoluminescence-spectra study of yttria-stabilized zirconia, Applied Physics A: Materials Science & Processing, 57 (1993) 225-228.

DOI: 10.1007/bf00332593

Google Scholar

[16] E. Wachsman, Structural and defect studies in solid oxide electrolytes, Solid State Ionics, 52 (1992) 213-218.

DOI: 10.1016/0167-2738(92)90107-z

Google Scholar