Observation of Three Dimensional Magnetic Fields of Tool Steel (JIS-SKS93) around Vicker's Indentations

Article Preview

Abstract:

Crack growth under cyclic loading causes failure of machine components. Non-destructive methods that can be related to plastic deformation around crack tip are necessary to study the crack growth. In the present work, a scanning Hall probe microscope (SHPM) equipped with GaAs film sensors was used to observe the magnetic fields around the plastic deformation induced by Vicker's indentations in tool steel specimens (SKS93, JIS B 4404: 2006, equivalent to AISI W4 tool steel). The magnetic field around a 2.94N-indentation was compared to that of a 294N-indentation. It was found that the decrease in the magnetic fields depends on the plastic deformation size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

265-269

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Martin and K. H. Wickramasinghe, Appl Phys Lett, 50, pp.1455-1457 (1987).

Google Scholar

[2] Y. Martin, D. Rugar and K.H. Wickramasinghe, Appl Phys Lett, 52, pp.244-246 (1988).

Google Scholar

[3] L. N. Vu, M. S. Wistrom, and D. J. Vanharkingen, Physica B, 194, p.1791 (1994).

Google Scholar

[4] J. R. Kirtley, M. B. Ketchen, K. G. Stawiasz, J. Z. Sun, W. J. Gallagher, S. H. Blanton and S. J. Wind, Appl Phys Lett, 66, p.1138 (1995).

DOI: 10.1063/1.113838

Google Scholar

[5] K. A. Moler, J. R. Kirtley, R. Liang, D. Bonn and W. H. Hardy, Phys Rev B, 55, p.12753 (1997).

Google Scholar

[6] S. T. Yamamoto and S. Shultz, Appl Phys Lett, 69, p.3263 (1996).

Google Scholar

[7] M. Nakamura, M. Kimura, K. Sueoka and K. Mukasa, Appl Phys Lett, 80, pp.2713-2715 (2002).

Google Scholar

[8] A. M. Chang, H. D. Hallen, L. Harriot, H. F. Hess, H. L. Loa, J. Kao, R. E. Miller and T. Y. Chang, Appl Phys Lett, 61, p.1974, (1992).

Google Scholar

[9] A. Oral, S. J. Bending and M. Henini, J. Vac. Sci. Technol. B, 14, pp.1202-1205 (1996).

Google Scholar

[10] G. D. Howells, A. Oral, S. J. Bending, S. R. Andrews, P. T. Squire, P. Rice, A. de Lozanne, J. A. C. Bland, I. Kaya and M. Henini, J. Magnetism and Magnetic Materials, 196-197, pp.917-919 (1999).

DOI: 10.1016/s0304-8853(98)01002-6

Google Scholar

[11] A. Sandhu, H. Masuda, A. Oral, S. J. Bending, A. Yamada and M. Konagai, Ultromicroscopy, 91, pp.97-101 (2002).

Google Scholar

[12] A. Sandhu, N. Iida, H. Masuda, A. Oral and S. J. Bending, Magnetism and Magnetic Materials, 242-245, pp.1249-1252 (2002).

Google Scholar

[13] A. Sandhu, A. Okamoto, I. Shibasaki and A. Oral, Microelectronic Engineering, 73-74, pp.524-528 (2004).

Google Scholar

[14] Z. Primadani, H. Osawa and A. Sandhu, Journal of Applied Physics, 101, p. 09K105 -3 (2007).

Google Scholar

[15] M. Dede, K. Ürkmen, Ö. Girisen, M. Atabak, A. Oral, I. Farrer and D. Ritchie, Journal of Nanoscience and Nanotechnology, 8, pp.619-622 (2008).

DOI: 10.1166/jnn.2008.a265

Google Scholar

[16] A. Sandhu, H. Masuda, H. Senoguchi and K. Togawa, Nanotechnology, 15, pp. S410-S413 (2004).

Google Scholar

[17] A. Sandhu, K. Kurosawa, M. Dede and A. Oral, Japanese Journal of Applied Physics, 43, pp.777-778 (2004).

Google Scholar

[18] A. Sandhu, H. Masuda, and A. Oral, Journal of Applied Physics, 41, pp. L1402-L1405 (2002).

Google Scholar

[19] K. Kida, H. Okano and H. Tanabe, Fatigue & Fracture of Engineering Materials & Structures, 32, 3, pp.180-188 (2009). doi: 10. 1111/j. 1460-2695. 2008. 01307. x.

DOI: 10.1111/j.1460-2695.2008.01307.x

Google Scholar

[20] K. Kida, E. C. Santos, T. Honda, H. Koike and J. Rozwadowska, Int. Jour. Fatigue, 39, pp.38-43 (2012) doi: 10. 1016/j. ijfatigue. 2011. 05. 013.

Google Scholar

[21] T. Honda, K. Kida , E. C. Santos, H. Koike, J. Rozwadowska, M. Uryu, K. Houri and H. Tanabe, Applied Mechanics and Materials, 83, pp.210-215 (2011). doi: 10. 4028/www. scientific. net/AMM. 83. 210.

DOI: 10.4028/www.scientific.net/amm.83.210

Google Scholar

[22] K. Kida, E. C. Santos, T. Honda, H. Koike, J. Rozwadowska, M. Uryu, K. Houri and H. Tanabe, Applied Mechanics and Materials, 83, pp.230-236 (2011). doi: 10. 4028/www. scientific. net/AMM. 83. 230.

DOI: 10.4028/www.scientific.net/amm.83.230

Google Scholar

[23] M. Uryu, K. Kida, T. Honda, E. C. Santos. and K. Saruwatari, Advanced Materials Research, 217-218, pp.1297-1302 (2011). doi: 10. 4028/www. scientific. net/AMR. 217-218. 1302.

DOI: 10.4028/www.scientific.net/amr.217-218.1297

Google Scholar

[24] H. Tanabe, K. Kida, T. Takamatsu, N. Itoh and E.C. Santos, Procedia Engineering, 10, pp.881-886 ( 2011). doi: 10. 1016/j. proeng. 2011. 04. 145.

DOI: 10.1016/j.proeng.2011.04.145

Google Scholar

[25] K. Kida, M. Uryu, T. Honda, E. C. Santos and K. Saruwatari, Applied Mechanics and Materials, 157 - 158, pp.1031-1037, (2012). doi: 10. 4028/www. scientific. net/AMM. 157-158. 1031.

DOI: 10.4028/www.scientific.net/amm.157-158.1031

Google Scholar

[26] K. Kida, M. Uryu, T. Honda, E. C. Santos and K. Saruwatari, Advanced Materials Research, 566, pp.103-108. (2012). doi: 10. 4028/www. scientific. net/AMR. 566. 103.

DOI: 10.4028/www.scientific.net/amr.566.103

Google Scholar

[27] M. Uryu, K. Kida, T. Honda, E. C. Santos and K. Saruwatari, Advanced Materials Research, 566, pp.15-21. (2012). doi: 10. 4028/www. scientific. net/AMR. 566. 15.

DOI: 10.4028/www.scientific.net/amr.566.15

Google Scholar

[28] K. Kida, M. Uryu, T. Honda, T. Shimoji, E. C. Santos and K. Saruwatari, Applied Mechanics and Materials, 307, pp.144-148, (2013). doi: 10. 4028/www. scientific. net/AMM. 307. 144.

DOI: 10.4028/www.scientific.net/amm.307.144

Google Scholar

[29] T. Honda, E. C. Santos and K. Kida, Scanning Hall probe microscopy of residual magnetic fields around plastic deformation of Vickers indentations in carbon tool steel (JIS, SKS93), Mechanics of Material, (2013, in press).

DOI: 10.1016/j.mechmat.2013.07.022

Google Scholar