Stability of Cauchy-Jensen Mappings in Non-Archimedean Normed Spaces

Article Preview

Abstract:

In this paper, we prove stability of the CauchyJensen functional equation in non-Archimedean normed spaces, using the so-called direct method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1935-1938

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.M. Ulam, Some questions in analysis: 1, stability, Problems in Modern Mathematics, Science eds., Wiley, New York, 1964 (Chapter VI).

Google Scholar

[2] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941) 222–224.

DOI: 10.1073/pnas.27.4.222

Google Scholar

[3] Won-Gil Park, Jae-Hyeong Bae, On a Cauchy–Jensen functional equation and its stability, J. Math. Anal. Appl. 323 (2006) 634–643.

Google Scholar

[4] V.A. Fa. ziev, T. Riedel, Stability of Jensen functional equation on semigroups, J. Math. Anal. Appl. 364 (2010) 341. 351.

Google Scholar

[5] G.L. Forti, Hyers. Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995) 143. 190.

DOI: 10.1007/bf01831117

Google Scholar

[6] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables, Progr. Nonlinear Differential Equations Appl., vol. 34, Birkhäuser Boston, Inc., Boston, MA, (1998).

DOI: 10.1007/978-1-4612-1790-9

Google Scholar