Stereo Vision Specific Observation Model for EKF-Based SLAM

Article Preview

Abstract:

This work addresses a new probabilistic observation model for a stereo simultaneous localization and mapping (SLAM) system within the standard Extended-Kalman filter (EKF) framework. The observation modal was derived by using the inverse depth parameterization as the landmark modal, and contributes to both bearing and range information into the EKF estimation. In this way the inherently non-linear problem cause by the projection equations is resolved and real depth uncertainty distribution of landmarks features can be accurately estimated. The system was demonstrated with real-world outdoor data. Analysis results show landmark feature depth estimation is more stable and the uncertainty noise converges faster than the traditional approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-241

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Cole, D. M., Newman, P. M. in: Using laser range data for 3D SLAM in outdoor environments. Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 1556–1563. (2006).

DOI: 10.1109/robot.2006.1641929

Google Scholar

[2] Davison, A. J. in: Real-time simultaneous localisation and mapping with a single camera. Proceedings Ninth IEEE International Conference on Computer Vision (p.1403–1410 vol. 2). IEEE. (2003).

DOI: 10.1109/iccv.2003.1238654

Google Scholar

[3] Se, S., Lowe, D., Little, J. in: Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks. The International Journal of Robotics Research, 21(8), 735–758. (2002).

DOI: 10.1177/027836402761412467

Google Scholar

[4] Herath, D., Kodagoda, S., Dissanayake, G. in: Simultaneous Localisation and Mapping: A Stereo Vision Based Approach. IEEE/RSJ International Conference on Intelligent Robots and Systems, 922–927. (2006).

DOI: 10.1109/iros.2006.281749

Google Scholar

[5] Lemaire, T., Berger, C., Jung, I. -K., Lacroix, S. in: Vision-Based SLAM: Stereo and Monocular Approaches. International Journal of Computer Vision, 74(3), 343–364. (2007).

DOI: 10.1007/s11263-007-0042-3

Google Scholar

[6] Berger, C., Lacroix, S. in: Using planar facets for stereovision SLAM, Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on , vol., no., p.1606, 1611, 22-26(2008).

DOI: 10.1109/iros.2008.4650986

Google Scholar

[7] Sibley, G, Matthies L., Sukhatme G. in: Bias Reduction and Filter Convergence for Long Range Stereo. In 12th International Symposium of Robotics Research (ISRR 2005). San Francisco, CA, USA. (2005).

DOI: 10.1007/978-3-540-48113-3_26

Google Scholar

[8] Sibley, G., G. Sukhatme and L. Matthies. in: The Iterated Sigma Point Filter with Applications to Long Range Stereo. In Robotics: Science and Systems II. Cambridge, USA. (2006).

DOI: 10.15607/rss.2006.ii.034

Google Scholar

[9] Bailey, Tim, Juan Nieto, Jose Guivant, Michael Stevens and Eduardo Nebot. in: Consistency of the EKF-SLAM Algorithm. In International Conference on Intelligent Robots and Systems (IROS 2006). Beijing, China. (2006).

DOI: 10.1109/iros.2006.281644

Google Scholar

[10] Li, X., Aouf, N., Nemra, A. in: 3D Mapping based VSLAM for UAVs. Control & Automation (MED), 2012 20th, 348–352. (2012).

DOI: 10.1109/med.2012.6265662

Google Scholar

[11] J. M. M. Montiel, J. Civera, and A. J. Davison. in: Unified inverse depth parametrization for monocular slam. In Robotics: Science and Systems, Philadelphia, USA, August (2006).

DOI: 10.15607/rss.2006.ii.011

Google Scholar

[12] Paz, L., Piniés, P. in: Large-scale 6-DOF SLAM with stereo-in-hand, IEEE Transactions on, 24(5), 946–957. (2008).

DOI: 10.1109/tro.2008.2004637

Google Scholar

[13] Karlsruhe Dataset, http: / http: /www. cvlibs. net/datasets/karlsruhe_sequences. html.

Google Scholar

[14] Geiger, A., Ziegler, J., Stiller, C. in: StereoScan: Dense 3d reconstruction in real-time. IEEE Intelligent Vehicles Symposium (IV), (Iv), 963–968. (2011).

DOI: 10.1109/ivs.2011.5940405

Google Scholar