Effects of Fly Ash/Slag Ratio and Liquid/Binder Ratio on Strength of Alkali-Activated Fly Ash/Slag Mortars

Article Preview

Abstract:

The purpose of this study is to investigate the effects of fly ash/slag ratio and liquid/binder ratio on strength of alkali-activated fly ash/slag (AAFS) mortars. Three liquid/binder ratios of 0.35, 0.5 and 0.65 and three fly ash/slag ratios of 100/0, 50/50, and 0/100 were selected as variables to design and produce mixes of AAFS mortars. The compressive strength and flexural strength of alkali-activated fly ash/slag mortars were discussed and compared with reference mortars produced using ordinary Portland cement (OPC) mortars. Based on the results, both fly ash/slag ratio and the liquid/binder ratio are significant factors influencing the strengths of AAFS mortars. The strength of AAFS mortars except alkali-activated fly ash mortars is higher than that of OPC mortars. When the fly ash/slag ratio reaches 50/50, the AAFS mortars possesses the highest strength compared with the other mortars.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

50-54

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.C.G. Juenger, F. W innefeld, J.L. Provis, J. Deker: Cem. Concr. Res. Vol. 41(2011), p.232.

Google Scholar

[2] S.A. Bernal, J.L. Provis, V. Rose, R.M. Gutierrez: Cement. Concrete. Comp. Vol. 33( 2011), p.46.

Google Scholar

[3] J. Wanga, X. Wua, J. Wang, C. Liu, Y. Lai, Z. Hong, J. Zheng: Microporous Mesoporous Mater. Vol. 155( 2012), p.186.

Google Scholar

[4] J.I. Escalante-Garcia, L.J. Espinoza-Perez, A. Gorokhovsky, L.Y. Gomez-Zamorano: Constr. Build. Mater. Vol. 23(2009), p.2511.

Google Scholar

[5] M.B. Haha, G.L. Saout, F. Winnefeld, B. Lothenbach: Cem. Concr. Res. Vol. 41(2011), p.301.

Google Scholar

[6] T. Xin, H. Hu: Procedia Earth Planet Sci. Vol. 5 ( 2012), p.83.

Google Scholar

[7] D. Krizana, B. Zivanovic: Cem. Concr. Res. Vol. 32( 2002), p.1181.

Google Scholar

[8] H. Mingyu, Z. Xiaomin, L. Fumei: Cement. Concrete Comp. Vol. 31( 2009), p.762.

Google Scholar

[9] L. Zuda, J. Drchalová, Rovnaník, P. Bayer, Z.K. Keršner, R.C. Erny: Cement. Concrete. Comp. Vol. 32( 2010), p.157.

DOI: 10.1016/j.cemconcomp.2009.11.009

Google Scholar

[10] X. Yang, W. Ni, X. Zhang, Y. Wang: J. Univ. Sci. Technol B. Vol. 15( 2008), p.796.

Google Scholar

[11] A. Ferna´ndez-Jime´nez, A. Palomo: Cem. Concr. Res. Vol. 35( 2005), p. (1984).

Google Scholar

[12] ASTM C109. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars. American Society for Testing and Materials (2011).

Google Scholar

[13] ASTM C348. Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. American Society for Testing and Materials (2008).

Google Scholar

[14] S.D. Wang, K.L. Scrivener, P.L. Pratt, Cem. Concr. Res. Vol. 24 ( 1994), p.1033.

Google Scholar

[15] F. Puertas, A. Fernandez-Jimenez, Cement. Concrete. Comp. Vol. 25(2003), p.287.

Google Scholar