Detection of Microbubbles Using the Hough Transform

Article Preview

Abstract:

The microbubble has been widely used and shown to be effective in various fields. Therefore, there is an importance of measuring accurately its size by image processing techniques. In this paper, we propose a detection method of microbubbles by the approach based on the Hough transform. Experimental results show only 4.49% of the average error rate of the undetected microbubbles and incorrectly detected ones. This low percentage of the error rate shows the effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

478-482

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Junker: Measurement of bubble and pellet size distributions: past and current image analysis technology, Bioprocess Biosyst Eng, 29, pp.185-206 (2006).

DOI: 10.1007/s00449-006-0070-3

Google Scholar

[2] P. V. C. Hough: Methods and means for recognizing complex patterns, US patent 3069654 (1962).

Google Scholar

[3] J. Illingworth and J. Kittler: A survey of the Hough transform, Computer Vision, Graphics, and Image Processing, 44, 1, pp.87-116 (1988).

DOI: 10.1016/s0734-189x(88)80033-1

Google Scholar

[4] E. Galindo, C. P. Larralde-Corona, T. Brito, M. S. Cordova-Aguilar, B. Taboada, L. Vega-Alvarado, and G. Corkidi: Development of advanced image analysis techniques for the in situ characterization of multiphase dispersions occurring in bioreactors, Journal of Biotechnology, 116, 3, pp.261-270 (2005).

DOI: 10.1016/j.jbiotec.2004.10.018

Google Scholar

[5] X. -H. Pan, R. Luo, X. -Y. Yang, and H. -J. Yang: Three-dimensional particle image tracking for dilute particle-liquid flows in a pipe, Measurement Science and Technology, 13, 8, pp.1206-1216 (2002).

DOI: 10.1088/0957-0233/13/8/307

Google Scholar

[6] M. Dobes, J. Martinek, D. Skoupil, Z. Dobesova, and J. Pospisil: Human eye localization using the modified Hough transform, Optik, 117, 10, pp.468-473 (2006).

DOI: 10.1016/j.ijleo.2005.11.008

Google Scholar

[7] B. Taboada, L. Vega-Alvarado, M. S. Cordova-Aguilar, E. Galindo, and G. Corkidi: Semi-automatic image analysis methodology for the segmentation of bubbles and drops in complex dispersions occurring in bioreactors, Experiments in Fluids, 41, 3, pp.383-392 (2006).

DOI: 10.1007/s00348-006-0159-0

Google Scholar

[8] L. Shen, X. Song, M. Iguchi, and F. Yamamoto: A method for recognizing particles in overlapped particle images, Pattern Recognition Letters, 21, pp.21-30 (2000).

DOI: 10.1016/s0167-8655(99)00130-0

Google Scholar

[9] S. -H. Chiu and J. -J. Liaw: An effective voting method for circle detection, Pattern Recognition Letters, 26, pp.121-133 (2005).

DOI: 10.1016/j.patrec.2004.09.037

Google Scholar

[10] B. Krasovitski and E. Kimmel: Stability of an encapsulated bubble shell, Ultrasonics, 44, pp.216-220 (2006).

DOI: 10.1016/j.ultras.2005.11.003

Google Scholar

[11] N. Otsu: A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern. 9(1), pp.62-66 (1979).

DOI: 10.1109/tsmc.1979.4310076

Google Scholar