[1]
Tang Qiang, Zhang Xianglun, Zuo Ling. Initial Study on the Path Planning's Algorithms for Unmanned Aerial Vehicles [J]. Aeronautical Computer Technique, 2003, 33(1): 125-128.
Google Scholar
[2]
Du Ping, Yang Chun. Introduction of Air Vehicle Path Planning Algorithms[J]. Flight Dynamics, 2005, 23(2): 10-14.
Google Scholar
[3]
Tang Qiang, Wang Jianyuan, Zhu Zhiqiang. The Simulation Study of PSO Based 3-D Vehicle Route Planning for Low Attitude Penetration[J]. Journal of System Simulation, 2004, 16(9): 2033-(2036).
Google Scholar
[4]
E. Bonabeau, M. Dorigo, G. Theraulaz.Swarm Intelligence:From Natural to Artificial Systems[M].New York:Oxford University Press,(1999).
Google Scholar
[5]
Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization[J]. Computers and Operations Research, 2006, 33(3): 859-871.
DOI: 10.1016/j.cor.2004.08.012
Google Scholar
[6]
Van B F, Engelbrecht A P. A study of particle swarm optimization particle trajectories[J]. Information Sciences, 2006, 176(8): 937-971.
DOI: 10.1016/j.ins.2005.02.003
Google Scholar
[7]
Di Hu, Ali Sarosh, Yun-Feng Dong. An improved particle swarm optimizer for parametric optimization of flexible satellite controller[J]. Applied Mathematics and Computation, 2011, 217: 8512-8521.
DOI: 10.1016/j.amc.2011.03.055
Google Scholar
[8]
Higashi N, Iba H. Particle Swarm Optimization with Gaussian Mutation[C]. In: Proceeding of the IEEE Swarm Intelligence Sympois, Indianapoiis: IEEE press, 2003: 72-79.
DOI: 10.1109/sis.2003.1202250
Google Scholar
[9]
Riget J, Vesterstroem J S. A diversity-guided particle swarm optimizer-the ARPSO, 2002-02[R]. Aarhus: Department of Computer Science in University of Aarhus, 2002: 1-12.
Google Scholar
[10]
Ruey-Hsun Liang, Sheng-Ren Tsai, Yie-Tone Chen, Wan-Tsun Tseng. Optimal power flow by a fuzzy based hybrid particle swarm optimization approach [J]. Electric Power Systems Research. 2011, 81: 1466-1474.
DOI: 10.1016/j.epsr.2011.02.011
Google Scholar