[1]
Kenndey J, Eberhart R. Particle Swarm Optimization [A]/ Proceedings of IEEE International Conference on Neural Networks[c]. IEEE Press, 1995: 1942-(1948).
Google Scholar
[2]
Krishnanand K.N.D. Ghose,D. Glowworm swarm optimization: a new method for optimizing multi-modal functions[J]. Computational Intelligence Studies, 2009, 1(1): 93-119.
DOI: 10.1504/ijcistudies.2009.025340
Google Scholar
[3]
Hongxia Liu, Yongquan Zhou. A Novel Hybrid Optimization Algorithm Based on Glowworm Swarm and Fish School [J] (Journal of Computational Information Systems, 2010, 13(6): 4533-4541.
Google Scholar
[4]
Arora J S. Introduction to Optimization Design. New York: McGraw-Hill, (1989).
Google Scholar
[5]
Belegundu Ashok D. Jasbir S. A study of Mathematical Programming Methods for Structural Optimization [J] International Journal for Numerical Methods in Engineering, 1985, 9(21): 1583-1599.
DOI: 10.1002/nme.1620210904
Google Scholar
[6]
Coello C A C. Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 2000, 41: 113-127.
DOI: 10.1016/s0166-3615(99)00046-9
Google Scholar
[7]
Coello C A C, Montes E M. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics, 2002, 7(16): 193-203.
DOI: 10.1016/s1474-0346(02)00011-3
Google Scholar
[8]
Rao S S. Engineering optimization (third Ed). New York: Wiley, (1996).
Google Scholar
[9]
Deb K. Optimal design of a welded beam via genetic algorithms. AIAA Journal, 1991, 29: 2013-(2015).
DOI: 10.2514/3.10834
Google Scholar
[10]
Ragsdell K M, Phillips D T. Optimal design of a class of welded structures using geometric programming. ASME Journal of Engineering for Industries, 1967, 98: 1021-1025.
DOI: 10.1115/1.3438995
Google Scholar
[11]
He Q, Wang L. A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Applied Mathematics and Computation, 2007, 186: 1407-1422.
DOI: 10.1016/j.amc.2006.07.134
Google Scholar
[12]
He Q, Wang L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence, 2007, 20: 89-99.
DOI: 10.1016/j.engappai.2006.03.003
Google Scholar