[1]
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan Press, London, (1976).
Google Scholar
[2]
J. A. Bondy, Pancyclic graphs: Recent Results, Infinite and Finite Sets [J]. Coll. Math. Soc. János Bolyai, 1975 10 181-187.
Google Scholar
[3]
J. A. Bondy and L. Lovász, Lengths of cycles in Halin graphs [J]. Journal of Graph Theory, 1985 8 397-410.
DOI: 10.1002/jgt.3190090311
Google Scholar
[4]
G. Cornuejols, D. Naddef and W. Pulleyblank, Halin graphs and the traveling salesman problem [J]. Math. Programming 1983 16 287-294.
DOI: 10.1007/bf02591867
Google Scholar
[5]
M. R. Garey and D. S. Johnson, Computers and Intractability—A Guide to the Theory of NP-Completeness, W. H. Freeman and Company, (1979).
Google Scholar
[6]
R. Halin, Studies on minimally n-connected graphs, Combinatorial Mathematics and its Applications, Academic Press, London, 1971 129-136.
Google Scholar
[7]
Yueping Li, Dingjun Lou, and Yunting Lu, Algorithms for the optimal Hamiltonian path in Halin graphs [J]. Ars Combinatoria 2008 87 235-255.
Google Scholar
[8]
Dingjun Lou, Hamiltonian paths in Halin graphs [J]. Mathematica Applicata (Chinese) 1995 8 158-160.
Google Scholar
[9]
Dingjun Lou and Huiquan Zhu, A note on max-leaves spanning tree problem in Halin graphs [J]. Australasian Journal of Combinatorics, 2004 29 95-97.
Google Scholar
[10]
Dingjun Lou and Hongke Dou, A linear time algorithm for optimal bottleneck traveling salesman problem on a Halin graph, Proc. 2011 International Conference on Computer, Communication and Information Technology [C]. 2011 60-62.
Google Scholar
[11]
J. M. Phillips, P. Punnen and S. N. Kabadi, A linear time algorithm for the bottleneck traveling salesman problem on a Halin graph [J]. Information Processing Letter 1998 67 105-110.
DOI: 10.1016/s0020-0190(98)00094-5
Google Scholar