An Improved Four Point Interpolatory Subdivision Scheme

Article Preview

Abstract:

In this paper we propose a new kind of geometry driven subdivision scheme for curve interpolation. We use cubic Lagrange interpolatory polynomial to construct a new point, selecting parameters by accumulated chord length method. The new scheme is shape preserving. It can overcome the shortcoming of the initial four point subdivision scheme proposed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1555-1557

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Aspert, N., Ebrahimi, T., and Vandergheynst, P., 2003. Non-linear subdivision using local spherical coordinates. Computer Aided Geometric Design, 20, 165-187.

DOI: 10.1016/s0167-8396(03)00028-1

Google Scholar

[2] Dyn, N., Levin, D., and Gregory, J.A., 1987. A 4-point interpolatory subdivision schemefor curve design. Computer Aided Geometric Design, 4, 257-268.

DOI: 10.1016/0167-8396(87)90001-x

Google Scholar

[3] Hassan, M.F., Ivrissimitzis, I.P., Dodgson, N.A., and Sabin, M.A., 2002. An interpolating 4-point C2 ternary stationary subdivision scheme. Computer Aided Geometric Design, 19(1), -18.

DOI: 10.1016/s0167-8396(01)00084-x

Google Scholar

[4] Kobbelt, L., 1996. A variational approach to subdivision. Computer Aided Geometric Design, 13(8), 743-761.

DOI: 10.1016/0167-8396(96)00007-6

Google Scholar

[5] Marinov, M., Dyn, N., and Levin, D., 2004. Geometrically controlled 4-point interpolatory schemes. in: Advances in Multiresolution for Geometric Modeling, N.A. Dodgson M.S. Floater, M.A. Sabin (eds. ), Springer-Verlag.

DOI: 10.1007/3-540-26808-1_17

Google Scholar

[6] J¨uttler, B., and Schwanecke, U., 2002. Analysis and design of Hermite subdivision schemes. Visual Computer, 18(5), 326-342.

DOI: 10.1007/s003710100153

Google Scholar