[1]
CORTESC, VAPNIK V. Support vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
Google Scholar
[2]
VAPNIKV. Estimation of dependence based on empirical data[M]. Berlin: Springer, (1982).
Google Scholar
[3]
GUYON I, MATIC N, VAPNIK V N. Discovering informative patterns and data cleaning[M]. Advances in Knowledge Discovery and Data Mining. Menlo Park, CA, USA: American Association for Artificial Intelligence, 1996: 181-203.
Google Scholar
[4]
LIN Chunfu, WANG Shengde. Fuzzy support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464-471.
DOI: 10.1109/72.991432
Google Scholar
[5]
INOUE T, ABE S. Fuzzy support vector machines for pattern classification[C]. Proceedings of IJCNN. New York, USA: IEEE Press, 2001: 1449-1454.
Google Scholar
[6]
HUANG H P, LIU Y H. Fuzzy support vector machine for pattern recognition and data mining[J]. International Journal of Fuzzy Systems, 2002, 4 (3): 826-835.
Google Scholar
[7]
LIN C F, WANG S D. Fuzzy support vectormachine[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 464-471.
Google Scholar
[8]
JIANG XIUFENG, YI ZHANG, LV JIAN CHENG. Fuzzy SVM with a new fuzzy membership function[J]. Neural Computing and Applications, 2006, 15(3/4): 268-276.
DOI: 10.1007/s00521-006-0028-z
Google Scholar
[9]
FULIN C, WANG SHENGDE. Fuzzy support vector machines with automatic membership setting[C]. Studies in Fuzziness and Soft Computing. [S. l]: Springer, 2005: 233-254.
DOI: 10.1007/10984697_11
Google Scholar
[10]
Teh Hsiao Wei, Fan Hua, Wu Liang Liang. Entropy coefficient to the theoretical modeling analyzes and parallel implementation[J]. Mini-Micro Systems, 2007, 28(10): 1184-1187. (in chinese).
Google Scholar
[11]
Yang Shuyin. Pattern Recognition and Intelligent Computing (2nd edition)[M] Beijing: Electronic Industry Press, 2008. (in chinese).
Google Scholar
[12]
Ye Ning, Wang Di, Dou Lijun. Information entropy and support vector relationship[J]. Guangxi Normal University (Natural Science), 2006, 24 (4): (in chinese).
Google Scholar