[1]
Srinivasa. Ramanujan. On certain trigonometric sums and their applications in the theory of numbers [J]. Trans. Camb. Phil Soc. 1918( 22) 259-276.
Google Scholar
[2]
R. D. Carmichael. Expansions of arithmetical functions in infinite series. InProceedings of The London Mathematical Society[C] 1932(1) 1-26.
DOI: 10.1112/plms/s2-34.1.1
Google Scholar
[3]
H. Gopalkrishna Gadiyar and R. Padma. Linking the circle and the sieve: Ramanujan-fourier series. [Online]. Available: arXiv. math/0601574v1 [math. NT].
Google Scholar
[4]
Sead Samadi, M. Omair Ahmad, M. N. S. Swamy. Ramanujan sums and discrete Fourier transforms. [J] IEEE Signal Process. Lett., 2005(12)293-296.
DOI: 10.1109/lsp.2005.843775
Google Scholar
[5]
Soo-Chang Pei, Kuo-Wei Chang. Odd ramanujan sums of complex roots of unity. [J] IEEE Signal Processing Letters. 2007 (14) 20-23.
DOI: 10.1109/lsp.2006.881527
Google Scholar
[6]
Machel. Planat. Ramanujan sums for signal processing of low-frequency noise. IEEE International DEC 2002[C] 2002 715–720.
DOI: 10.1109/freq.2002.1075974
Google Scholar
[7]
Machel. Planat, M. Minarovjech, and M. Saniga. Ramanujan sums analysis of long-period sequences and 1/f noise. [J] Europhysics Letters(epl). 2009(85) 1–5.
DOI: 10.1209/0295-5075/85/40005
Google Scholar
[8]
Mohand Lagha and Messaoud Bensebti. Doppler spectrum estimation by ramanujan-fourier transform(rft). [J] Digital Signal Processing. 2009(19) 843–851.
DOI: 10.1016/j.dsp.2009.03.007
Google Scholar
[9]
LT. Mainardi, M. Bertinelli, and R. Sassi. Analysis of -wave alternans using the ramanujan transform . [J] Computer in Cardiology Bologna. 2008(35)605–608.
DOI: 10.1109/cic.2008.4749114
Google Scholar
[10]
Lakshmi Sugavaneswaren, Shengkun Xie, Karthikayan Umapathy, and Sridhar Krishnan. Time-frequency anaysis via Ramanujan sums. [J] Signal Processing Letters, IEEE, 2012(19) 352–355.
DOI: 10.1109/lsp.2012.2194142
Google Scholar