Research on Ramanujan-FMT Modulation and the Efficient Implementation Algorithm

Article Preview

Abstract:

Ramanujan Sums (RS) and their Fourier transforms attract many attentions in signal processing in recent years. Thanks to their non-periodic and non-uniform spectrum, RS are widely used in low-frequency noise processing, e.g., Doppler spectrum estimation and time-frequency analysis. We proved the transforms can be perfectly reconstructed under certain circumstance and built a multi-tone system using Ramanujan Fourier transforms as modulation and demodulation. This system got a lower BER in AWGN channel compare to OFDM.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1693-1696

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Srinivasa. Ramanujan. On certain trigonometric sums and their applications in the theory of numbers [J]. Trans. Camb. Phil Soc. 1918( 22) 259-276.

Google Scholar

[2] R. D. Carmichael. Expansions of arithmetical functions in infinite series. InProceedings of The London Mathematical Society[C] 1932(1) 1-26.

DOI: 10.1112/plms/s2-34.1.1

Google Scholar

[3] H. Gopalkrishna Gadiyar and R. Padma. Linking the circle and the sieve: Ramanujan-fourier series. [Online]. Available: arXiv. math/0601574v1 [math. NT].

Google Scholar

[4] Sead Samadi, M. Omair Ahmad, M. N. S. Swamy. Ramanujan sums and discrete Fourier transforms. [J] IEEE Signal Process. Lett., 2005(12)293-296.

DOI: 10.1109/lsp.2005.843775

Google Scholar

[5] Soo-Chang Pei, Kuo-Wei Chang. Odd ramanujan sums of complex roots of unity. [J] IEEE Signal Processing Letters. 2007 (14) 20-23.

DOI: 10.1109/lsp.2006.881527

Google Scholar

[6] Machel. Planat. Ramanujan sums for signal processing of low-frequency noise. IEEE International DEC 2002[C] 2002 715–720.

DOI: 10.1109/freq.2002.1075974

Google Scholar

[7] Machel. Planat, M. Minarovjech, and M. Saniga. Ramanujan sums analysis of long-period sequences and 1/f noise. [J] Europhysics Letters(epl). 2009(85) 1–5.

DOI: 10.1209/0295-5075/85/40005

Google Scholar

[8] Mohand Lagha and Messaoud Bensebti. Doppler spectrum estimation by ramanujan-fourier transform(rft). [J] Digital Signal Processing. 2009(19) 843–851.

DOI: 10.1016/j.dsp.2009.03.007

Google Scholar

[9] LT. Mainardi, M. Bertinelli, and R. Sassi. Analysis of -wave alternans using the ramanujan transform . [J] Computer in Cardiology Bologna. 2008(35)605–608.

DOI: 10.1109/cic.2008.4749114

Google Scholar

[10] Lakshmi Sugavaneswaren, Shengkun Xie, Karthikayan Umapathy, and Sridhar Krishnan. Time-frequency anaysis via Ramanujan sums. [J] Signal Processing Letters, IEEE, 2012(19) 352–355.

DOI: 10.1109/lsp.2012.2194142

Google Scholar