On Link Density and Network Synchronization in Scale-Free Network

Article Preview

Abstract:

The relations between link density and network synchronizability based on scale-free weighted networks is investigated. In this work, it shows that synchronizability of networks Type I decrease along with the increases of link density, when the netwrok size is fixed. While the synchronizability of networks Type II is remarkable decreased by enhancing the link density with different network size.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2276-2279

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. E. J. Newman, The structure and function of complex networks, SIAM Rev. vol. 45, 67, (2003).

Google Scholar

[2] D. Watts, S. Strogatz, Collective dynamics of "small-world" networks, Nature (London), vol. 393, p.440–442, (1998).

DOI: 10.1038/30918

Google Scholar

[3] A. -L. Barabási, R. Albert, Emergence of scaling in random networks, Science vol. 286, pp.509-512, (1999).

Google Scholar

[4] Y. B Xie, W. X. Wang, B. H. Wang, Modeling the coevolution of topology and traffic on weighted technological networks, Phys. Rev. E, vol. 75, 026111, (2007).

DOI: 10.1103/physreve.75.026111

Google Scholar

[5] I. Leyva, A. Navas, I. Sendiña-Nadal, J. M. Buldú, J. A. Almendral, S. Boccaletti, Synchronization waves in geometric networks, Phys. Rev. E vol. 84, 065101, (2011).

DOI: 10.1103/physreve.84.065101

Google Scholar

[6] B. B. Hao, H Yu, Y. W. Jing, S. Y. Zhang, On synchronizability and heterogeneity in unweighted networks, Physica A, vol. 388, pp.1939-1945, (2009).

DOI: 10.1016/j.physa.2009.01.016

Google Scholar

[7] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C.S. Zhou, Synchronization in complex networks, Physics Reports, vol. 469, pp.93-153, (2008).

DOI: 10.1016/j.physrep.2008.09.002

Google Scholar

[8] X.J. Ma, L. Huang, Y.C. Lai, Z.G. Zheng, Emergence of loop structure in scale-free networks and dynamical consequence, Phys. Rev. E, vol. 79, 056106, (2009).

DOI: 10.1103/physreve.79.056106

Google Scholar

[9] M. Zhao, T. Zhou, B.H. Wang, G. Yan, et al., Relations between average distance, heterogeneity and network synchronizability, Physica A, vol. 371, p.773–780, (2006).

DOI: 10.1016/j.physa.2006.03.041

Google Scholar

[10] A. Zeng, S.W. Son, C.H. Yeung, et al., Enhancing synchronization by directionality in complex networks, Phys. Rev. E, vol. 83, 045101, (2011).

Google Scholar

[11] B B Hao, Y W Jing, General BBV Model of Weighted Complex Networks, International Conference on Communication Software and Networks, Macau, China, 295-298, (2009).

DOI: 10.1109/iccsn.2009.81

Google Scholar

[12] A. Barrat, M. Barthélemy, A. Vespignani, Modeling the evolution of weighted networks, Phys. Rev. E, vol. 70, 066149, (2004).

DOI: 10.1103/physreve.70.066149

Google Scholar

[13] X. F. Wang, G. R. Chen, Synchronization in scale-free dynamical networks: robustness and fragility, IEEE Circuits Syst. I, vol. 49, 54-62, (2002).

DOI: 10.1109/81.974874

Google Scholar

[14] M. Barahona, L. M. Pecora, Synchronization in small-world systems, Phys. Rev. Lett., vol. 89, 054101, (2002).

Google Scholar

[15] B B Hao, Y W Jing, S Y Zhang, On synchronizability and heterogeneity in unweighted networks. Physica A, 2009, 388(9): 1939-(1945).

DOI: 10.1016/j.physa.2009.01.016

Google Scholar