A Blind Source Separation Method Applied to Simultaneous Kinetic Multicomponent Determination

Article Preview

Abstract:

A multi-dimensional data processing method, independent component analysis-based principal component regression (ICA-PCR) was developed for simultaneous kinetic determination of Cu (II), Fe (III) and Ni (II). Independent component analysis is a newly developed signal processing technique aiming at solving related blind source separation (BSS) problem. One program, PICAPCR, was designed to perform relative calculations. Experimental results showed the ICA-PCR method to be successful for simultaneous multicomponent kinetic determination even where there was severe overlap of spectra.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3678-3681

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. B. Sirven, B. Bousquent, L. Ganioni, L. Sarger. Laser-induced breakdown spectroscopy of composite samples: comparison of advanced chemometrics methods. [J]. Analytical Chemistry. 2006 78(5) 1462-1469.

DOI: 10.1021/ac051721p

Google Scholar

[2] S.X. Ren, L. Gao. Simultaneous quantitative analysis of overlapping spectrophotometric signals using wavelet multiresolution analysis and partial least squares. [J]. Talanta, 2000 50(6) 1163–1173.

DOI: 10.1016/s0039-9140(99)00226-x

Google Scholar

[3] S. Ren, L. Gao. Resolve of overlapping voltammetric signals in using a wavelet packet transform based Elman recurrent neural network. [J]. J. Electroanal. Chem. 2006 586 (1) 23-30.

DOI: 10.1016/j.jelechem.2005.09.018

Google Scholar

[4] R. J. H. Waddell, N. NicDaeid, D. littlejohn. Classification of ecstasy tablets using trace metal analysis with the application of chemometric procedures and artificial neural network algorithms. [J]. Analyst. 2004 129 235-240.

DOI: 10.1039/b312336g

Google Scholar

[5] R. Linker. Spectrum analysis by recursively pruned extended auto-associative neural network. [J]. J. Chemometrics. 2005 19 492-499.

DOI: 10.1002/cem.955

Google Scholar

[6] A. Hyvarinen, E. Oja. Independent component analysis: algorithm and applications. [J]. Neural Networks. 2000 13 411-430.

Google Scholar

[7] L.D. Lathauwer, B.D. Moor, J. Vandewalle. An introduction to independent component analysis. [J]. J. Chemometrics. 2000 14 123-149.

DOI: 10.1002/1099-128x(200005/06)14:3<123::aid-cem589>3.0.co;2-1

Google Scholar

[8] G. Brys, M. Hubert, P. J. Rousseeuw. A robustification of independent component analysis. [J]. J. Chemometrics. 2005 19 364-375.

DOI: 10.1002/cem.940

Google Scholar

[9] M. Toivianen, F. Corona, J. Paaso, P. Teppola. Blind source separation in diffuse reflectance NIR spectroscopy using independent component analysis. [J]. J. Chemometrics. 2010 24 514-522.

DOI: 10.1002/cem.1316

Google Scholar

[10] D. Langlois, S. Chartier, D. Gosselin. An introduction to independent component analysis: InforMax and FastICA algorithm. [J]. Tutorials in quantitative method for psychology. 2010 6(1) 31-38.

DOI: 10.20982/tqmp.06.1.p031

Google Scholar

[11] J. F. Cardoso, A. Souloumiac. Blind beamforming for non Gaussian signals. [J]. IEEE Proceding- F. 1993 140 362-370.

Google Scholar