Bidirectional 2DPCA Based on L1-Norm Maximization

Article Preview

Abstract:

In this paper, we propose a simple but effective bidirectional 2DPCA based on L1-norm maximization ((2D)2PCA-L1). Traditional bidirectional 2DPCA is sensitive to outliers for its L2-norm-based least squares criterion, while (2D)2PCA-L1 is robust. Experimental results demonstrate its advantages in the fields of data compression and object recognition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3974-3977

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Matthew A. Turk, Alex P. Pentland. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience. 1991: 3(1): 71–86.

Google Scholar

[2] Anil K. Jain, Robert P.W. Duin, Jianchang Mao. Statistical pattern recognition: a review [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2000: 22(1): 4–37.

DOI: 10.1109/34.824819

Google Scholar

[3] Jian Yang, David Zhang, Alejandro F. Frangi, Jin-yu Yang. Two-dimensional PCA: a new approach to appearance-based face representation and recognition [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2004: 26(1): 131–137.

DOI: 10.1109/tpami.2004.1261097

Google Scholar

[4] Daoqiang Zhang, Zhi-hua Zhou. (2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition [J]. Neurocomputing. 2005: 69(1-3): 224–231.

DOI: 10.1016/j.neucom.2005.06.004

Google Scholar

[5] A. Baccini, Ph. Besse, A. de Falguerolles. A L1-Norm PCA and a heuristic approach. Ordinal and Symbolic Data Analysis, E. Diday, Y. Lechevalier, and P. Opitz, eds., Springer, 1996: 359-368.

DOI: 10.1007/978-3-642-61159-9_32

Google Scholar

[6] Chris Ding, Ding Zhou, Xiaofeng He, H Zha. R1-PCA: Rotational invariant L1-norm principal component analysis for robust subspace factorization [C]. Proceedings of the 23rd International Conference Machine Learning , 2006: 281–288.

DOI: 10.1145/1143844.1143880

Google Scholar

[7] Nojun Kwak. Principal component analysis based on L1-norm maximization [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2008: 30(9): 1672–1680.

DOI: 10.1109/tpami.2008.114

Google Scholar

[8] Xueong Li, Yuanwei Pang, Yuan Yuan. L1-norm-based 2DPCA [J]. IEEE Trans. on Systems, Man, and Cybernetics, Part B, Cybernetics. 2009: 40(4): 1170-1175.

DOI: 10.1109/tsmcb.2009.2035629

Google Scholar

[9] The ORL Face Database, Cambridge, U. K, AT&T (Olivetti) Research Laboratories. [Online]. Available: http: /www. uk. research. att. com/facedatabase. html.

Google Scholar

[10] Yale Face DB: Yale Univ. 2007. [Online]. Available: http: /cvc. yale. edu/projects/yalefaces/ yalefaces. html.

Google Scholar