Predict the Strong Binding Ability Polypeptide of Human α-Enolase with the HLA-DRB1 * 0401

Article Preview

Abstract:

Human α-enolase (ENO1), an evolutionarily conserved and multifunctional protein, is a target self-antigen of rheumatoid arthritis (RA). Rheumatoid arthritis (RA) is genetically associated with MHC class II molecules, such as DRB1*0101, DRB1*0401 and DRB1*0404 allele. Among these DRB1 alleles, DRB1*0401 show the most correlation with RA. However, strong binding ability polypeptide of ENO1 with HLA-DRB1*0401 is still largely unknown. In this study, we used NetMHCII prediction method to predict the strong binding ability polypeptide with HLA-DRB1*0401. Among the 434 predicted fragment peptide, ENO1129-141: PLYRHIADLAGNS showed strong binding with HLA-DR4 and peptide ENO1281-293 KSFIKDYPVVSIE is the second candidate peptide. Based on these result, we choosed EON1129-141 and EON1281-293 polypeptides to do the molecular modeling, and used the molecular dynamics to optimize the three-dimensional structural model. The molecular dynamics results showed that ENO1129-141: PLYRHIADLAGNS and ENO1281-293: KSFIKDYPVVSIE have strong binding ability with HLA-DR4* 0401. In the shared epitope, both ENO1129-141and ENO1281-293 have the very near distance 3.15Å and 3.10Å with K71 of the β1 chain. The main-chain conformations of ENO1129-141 sit more deeply with β1 chain. All together, results indicated that ENO1129-141 and ENO1281-293 bind strong with HLA-DR4 and would be potential T cell epitopes of human α-enolase that induced RA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4353-4358

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wegner N, Wait R, Sroka A, Eick S, Nguyen KA, Lundberg K, Kinloch A, Culshaw S, Potempa J, Venables PJ: Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and alpha-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum 2010, 62(9): 2662-2672.

DOI: 10.1002/art.27552

Google Scholar

[2] Bae S, Kim H, Lee N, Won C, Kim HR, Hwang YI, Song YW, Kang JS, Lee WJ: alpha-Enolase expressed on the surfaces of monocytes and macrophages induces robust synovial inflammation in rheumatoid arthritis. J Immunol 2012, 189(1): 365-372.

DOI: 10.4049/jimmunol.1102073

Google Scholar

[3] Weyand CM, Hicok KC, Conn DL, Goronzy JJ: The influence of HLA-DRB1 genes on disease severity in rheumatoid arthritis. Ann Intern Med 1992, 117(10): 801-806.

DOI: 10.7326/0003-4819-117-10-801

Google Scholar

[4] Wang D, Hill JA, Cairns E, Bell DA: The Influence of HLA-DR4 (0401) on the Immune Response to Type II Collagen and the Development of Collagen Induced Arthritis in Mice. Journal of Autoimmunity 2002, 18(2): 95-103.

DOI: 10.1006/jaut.2001.0569

Google Scholar

[5] Yao Cuimei, Sun Changjiang, Zhang Zhiyong, Yaya Z: Tcell epitope distribution and analyse of Mycobacterium tuberculosis RD1 region. Journal ofAnhui Agriculture Science 2011, 39(25): 15218-15221.

Google Scholar

[6] Yin Y, Li Y, Kerzic MC, Martin R, Mariuzza RA: Structure of a TCR with high affinity for self-antigen reveals basis for escape from negative selection. EMBO J 2011, 30(6): 1137-1148.

DOI: 10.1038/emboj.2011.21

Google Scholar

[7] Hennecke J, Wiley DC: Structure of a complex of the human alpha/beta T cell receptor (TCR) HA1. 7, influenza hemagglutinin peptide, and major histocompatibility complex class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401): insight into TCR cross-restriction and alloreactivity. J Exp Med 2002, 195(5): 571-581.

DOI: 10.3410/f.1005662.66962

Google Scholar

[8] Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography 1993, 26: 283-291.

DOI: 10.1107/s0021889892009944

Google Scholar

[9] Eisenberg D, Luthy R, Bowie JU: VERIFY3D: assessment of protein models with three-dimensional profiles. Methods in enzymology 1997, 277: 396-404.

DOI: 10.1016/s0076-6879(97)77022-8

Google Scholar

[10] Andreatta M, Schafer-Nielsen C, Lund O, Buus S, Nielsen M: NNAlign: a web-based prediction method allowing non-expert end-user discovery of sequence motifs in quantitative peptide data. PLoS One 2011, 6(11): e26781.

DOI: 10.1371/journal.pone.0026781

Google Scholar

[11] Claus Lundegaard1*, Ilka Hoof2, Nielsen1 OLaM: State of the art and challenges in sequence based T-cell epitope prediction. Immunome Research (2010).

Google Scholar

[12] Rammensee HG, Bachmann J, Emmerich NPN, Bachor OA, Stevanović S: SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999, 50(3): 213-219.

DOI: 10.1007/s002510050595

Google Scholar

[13] Sturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, Braxenthaler M, Gallazzi F, Protti MP, Sinigaglia F et al: Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol 1999, 17(6): 555-561.

DOI: 10.1038/9858

Google Scholar