Recent Frequent Item Mining Algorithm in a Data Stream Based on Flexible Counter Windows

Article Preview

Abstract:

In the paper the author introduces FCW_MRFI, which is a streaming data frequent item mining algorithm based on variable window. The FCW_MRFI algorithm can mine frequent item in any window of recent streaming data, whose given length is L. Meanwhile, it divides recent streaming data into several windows of variable length according to m, which is the number of the counter array. This algorithm can achieve smaller query error in recent windows, and can minimize the maximum query error in the whole recent streaming data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1415-1418

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Misra, D. Gries. Finding repeated elements[J]. Science of Computer Programming, 1982, 2(2): 143~152.

DOI: 10.1016/0167-6423(82)90012-0

Google Scholar

[2] L. Golab, D. DeHaan, A. L. Ortiz, et al. Finding frequent items in sliding windows with multinomially-distributed item frequencies[C]. In Proceedings of the 16th International Conference on Scientific and Statistical Database Management, 2004: 425~426.

DOI: 10.1109/ssdm.2004.1311242

Google Scholar

[3] G. S. Manku, R. Motwani. Approximate Frequency Counts over Data Streams[C]. In Proc. of VLDB, 2002: 346~357.

DOI: 10.1016/b978-155860869-6/50038-x

Google Scholar

[4] T. Calders, N. Dexters, B. Goethals. Mining Frequent Itemsets in a Stream[C]. In Proceedings of 7th IEEE International Conference on Data Mining, 2007: 83~92.

DOI: 10.1109/icdm.2007.66

Google Scholar

[5] Frequent itemset mining dataset repository, university of helsinki (2008), http: /fimi. cs. helsinki. fi/data.

Google Scholar

[6] L. f. Zhang, Y. Guan, Frequency estimation over sliding windows[C], Proceedings of the 2008 IEEE 24th International Conference on Data Engineering, 2008: 1385~1387.

DOI: 10.1109/icde.2008.4497564

Google Scholar

[7] H. F. Li, S. Y. Lee. Mining frequent itemsets over data streams using efficient window sliding techniques[J]. Expert Systems with Applications. 2009, 36(2): 1466-1477.

DOI: 10.1016/j.eswa.2007.11.061

Google Scholar

[8] H. T. Lam ,T. Calders, Mining Top-K Frequent Items in a Data Stream with Flexible Sliding Windows, Copyright 2010 ACM 978-1-4503-0055-110/07.

DOI: 10.1145/1835804.1835842

Google Scholar