Two Synchronization Schemes for Chen Chaotic System

Article Preview

Abstract:

This paper presents two novel synchronization schemes for Chen chaotic system, drive-response synchronization and adaptive synchronization with unknown parameters, numerical simulation results demonstrate the effectiveness of the proposed method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

915-918

Citation:

Online since:

August 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Carroll TL, Pecora LM. Synchronization chaotic circuits. IEEE Trans Circuits Sys 1991; 38: 453–6.

DOI: 10.1109/31.75404

Google Scholar

[2] Yang XS, Duan CK, Liao XX. A note on mathematical aspects of drive-response type synchronization. Chaos, Solitons & Fractals 1999; 10: 1457–62.

DOI: 10.1016/s0960-0779(98)00123-4

Google Scholar

[3] Femat R, et al. Adaptive synchronization of high-order chaotic systems: a feedback with low-order parameterization. Physica D 2000; 139: 231-46.

DOI: 10.1016/s0167-2789(99)00226-2

Google Scholar

[4] Chen SH, Lu JH. Synchronization of an uncertain unified chaotic system via adaptive control. Chaos, Solitons & Fractals 2002; 14: 643–7.

DOI: 10.1016/s0960-0779(02)00006-1

Google Scholar

[5] Wang C, Ge SS. Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos, Solitons & Fractals2001; 12: 1199–206.

DOI: 10.1016/s0960-0779(00)00089-8

Google Scholar

[6] Liao TL, Tsai SH. Adaptive synchronization of chaotic systems and its application to secure communications. Chaos, Solitons &Fractals 2000; 11: 1387–96.

DOI: 10.1016/s0960-0779(99)00051-x

Google Scholar

[7] Feki M. An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons & Fractals 2003; 18: 141-8.

DOI: 10.1016/s0960-0779(02)00585-4

Google Scholar

[8] JH, Zhou TS, Zhang SC. Chaos synchronization between linearly coupled chaotic systems. Chaos, Solitons & Fractals2002; 14: 529–41.

DOI: 10.1016/s0960-0779(02)00005-x

Google Scholar

[9] Alexeyev AA, Shalfeev VD. Chaotic synchronization of mutually coupled generators with frequency-controlled feedback loop. Int J Bifurcat Chaos 1995; 5: 551–7.

DOI: 10.1142/s0218127495000442

Google Scholar

[10] Ucar A, Lonngren KE, Bai EW. Synchronization of the unified chaotic systems via active control. Chaos, Solitons & Fractals 2006; 27: 1292–7.

DOI: 10.1016/j.chaos.2005.04.104

Google Scholar

[11] Chen S, Yang Q, Wang C. Impulsive control and synchronization of unified chaotic system. Chaos, Solitons & Fractals 2004; 20: 751–8.

DOI: 10.1016/j.chaos.2003.08.008

Google Scholar

[12] Yang T, Chua LO. Impulsive control and synchronization of nonlinear dynamical systems and application to secure communication. Int J Bifurcat chaos 1997; 7: 645–64.

DOI: 10.1142/s0218127497000443

Google Scholar

[13] Park JH. Synchronization of Genesio chaotic system via backstepping approach. Solitions & Fractals 2006; 27: 1369-1375.

DOI: 10.1016/j.chaos.2005.05.001

Google Scholar

[14] Han X, Lu JA, Wu X. Adaptive feedback synchronization ofsystem. Chaos, Solitons & Fractals 2004; 22: 221-7.

DOI: 10.1016/j.chaos.2003.12.103

Google Scholar

[15] Chen S, J. Parameters identification and synchronization of chaotic systems based upon adaptive control. Phys Lett A 2002; 299(4): 353–8.

Google Scholar

[16] Wang YW, Guan ZH, Wen XJ. Adaptive synchronization for Chen chaotic system with fully unknown parameters. Solitions & Fractals 2004; 19: 899-903.

DOI: 10.1016/s0960-0779(03)00256-x

Google Scholar