Three Dimensional Dynamic Analyses on Stroller Wheel with Shock Absorber

Article Preview

Abstract:

We present the analyses of dynamics behaviors on a stroller wheel by three dimensional finite element method. The vibration of the wheel system causes by two different type barriers on the road as an experiment design to mimic the real road conditions. In addition to experiment analysis, we use two different packages to numerically simulate the wheel system dynamics activities. Some of the simulation results have good agreement with the experimental data in this research. Other interesting data will be measured and analyzed by us for future study and we will investigate them by using adaptive finite element method for increasing the precision of the computation results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

159-163

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gillespie, T. D., Fundamentals of Vehicle Dynamics, Society of Automotive Engineers Inc., (1992).

Google Scholar

[2] The Bose Suspension System-Resolving the conflict between comfort and control, Bose Learning Center, 2008. http: /www. bose. com/controller?event=VIEW_STATIC_PAGE_EVENT&url=/learning/project_sound/suspension_components. jsp.

Google Scholar

[3] Shen, Y., Golnaraghi, M. F. and Heppler, G. R., Load-leveling suspension system with a magneto-rheological damper, Vehicle System Dynamics, Vol. 45, No. 4, pp.297-312, (2007).

DOI: 10.1080/00423110600928721

Google Scholar

[4] Xiaojie Wang and Faramarz Gordaninejad, Flow Analysis and Modeling of Field-Controllable, Electro- and Magneto-Rheological Fluid Dampers, Journal of Applied Mechanics, Vol. 74 / 13, (2007).

DOI: 10.1115/1.2166649

Google Scholar

[5] C. Shivaram and K.V. Gangadharan, Statistical modeling of a magnetorheological fluid damper using the design of experiments approach, Smart Materials And Structures Smart Mater. Struct., 16, p.1310–1314, (2007).

DOI: 10.1088/0964-1726/16/4/044

Google Scholar

[6] Ping Yang, Ninbo Liao, Jianbo Yang, Design, test and modelling evaluation approach of a novel Si-oil shock absorber for protection of electronic equipment in moving vehicles, Mechanism and Machine Theory, Volume 43, Issue 1, Pages 18-32, (2008).

DOI: 10.1016/j.mechmachtheory.2007.06.001

Google Scholar

[7] Zekeriya Parlak, Tahsin Engin, İsmail Çallı, Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field, Mechatronics, Volume 22, Issue 6, Pages 890-903, September (2012).

DOI: 10.1016/j.mechatronics.2012.05.007

Google Scholar

[8] Dinh Quang Truong, Kyoung Kwan Ahn, Nonlinear black-box models and force-sensorless damping control for damping systems using magneto-rheological fluid dampers, Sensors and Actuators A: Physical, Volume 167, Issue 2, Pages 556-573, June (2011).

DOI: 10.1016/j.sna.2011.02.048

Google Scholar

[9] Fengchen Tu, Quan Yang, Caichun He, Lida Wang, Experimental Study and Design on Automobile Suspension Made of Magneto-Rheological Damper, Energy Procedia, Volume 16, Part A, Pages 417-425, (2012).

DOI: 10.1016/j.egypro.2012.01.068

Google Scholar

[10] Fitrian Imaduddin, Saiful Amri Mazlan, Hairi Zamzuri, A design and modelling review of rotary magnetorheological damper, Materials & Design, Volume 51, Pages 575-591, October (2013).

DOI: 10.1016/j.matdes.2013.04.042

Google Scholar

[11] Francesc Pozo, Mauricio Zapateiro, Leonardo Acho, Yolanda Vidal, Ningsu Luo, Experimental study of semiactive VSC techniques for vehicle vibration reduction, Journal of the Franklin Institute, Volume 350, Issue, Pages 1-181, February (2013).

DOI: 10.1016/j.jfranklin.2012.11.008

Google Scholar

[12] Duym, S. Stiens, R. and Reybrouck, K., Evaluation of Shock Absorber Models, Vehicle System Dynamics, 27, 1997, pp.109-127.

DOI: 10.1080/00423119708969325

Google Scholar

[13] Bathe, K. J. Zhang, H. and Ji, S., Finite element analysis of fluid flows fully coupled with structural interactions, Computers & Structures, 72(1-3), 1-16, (1999).

DOI: 10.1016/s0045-7949(99)00042-5

Google Scholar

[14] Beghi, A. Liberati, M. Mezzalira, S. and Peron, S., Grey-box modeling of a motorcycle shock absorber for virtual prototyping applications, Simulation Modeling Practice and Theory, 15(8), pp.894-907, (2007).

DOI: 10.1016/j.simpat.2007.04.011

Google Scholar

[15] Koji Moriya, Takashi Kawabuchi, Kiyoshi Ioi, Atsushi Suda, Masahiko Yamamoto, Dynamic Analysis of Wagon Caster With Shock Absorber, SICE Annual Conference 1250-1254.

Google Scholar