[1]
Hsu K Y, Goss L P, Trump D D, et al. Performance of a trapped-vortex combustor. AIAA-95-0810.
Google Scholar
[2]
Advanced vortex combustion-AVC. http: /www. ramgen. com/tech. vortex. htm.
Google Scholar
[3]
Edmonds R G, Steele R C, Williams J T, etc. Ultra-low NOx advanced vortex combustor. Proceedings of the ASME Turbo Expo 2006- Power for Land, Sea and Air, 2006, 255-262.
Google Scholar
[4]
Edmonds R G, Williams J T, Steele R C, etc. Low NOx advanced vortex combustor. Journal of Engineering for Gas Turbines and Power, 2008, 130(3): 034502.
DOI: 10.1115/1.2838992
Google Scholar
[5]
Deng Yangbo, Liu S hiqing, Zhong Jingjun. Research of the flow characteristics of cold state flow of advanced vortex combustor [J]. Journal of Engineering Thermophysics, Vol. 29, No. 8 (2008), pp.1416-1418.
Google Scholar
[6]
Deng Yangbo, Liu Shiqing, Zhong Jingjun. Numerical simulation for combustion characteristics of advanced vortex combustor [J]. Journal of Dalian Maritime University, Vol. 34, No. 3 (2008), pp.21-24.
Google Scholar
[7]
Zhong Jingjun, Liu Shiqing. Impact of nozzle position on after body on cold flow field values in trapped vortex chamber [J]. Journal of Shanghai Maritime University, Vol. 32, No. 1 (2011), pp.44-48.
Google Scholar
[8]
Liu Shiqing, Zhong Jingjun. Numerical investigation on the influence of injection angle from after body in cold flow field of the trapped vortex combustor [J]. Journal of Harbin Engineering University, Vol. 31, No. 8 (2010), pp.1-8.
DOI: 10.1109/rsete.2011.5964765
Google Scholar
[9]
Sun Haijun, Zeng Zhuoxiong, Xu Yihua. Numerical simulation of bluff-body structural parameters in advanced vortex combustor [J]. Journal of Projectiles Rockets Missiles and Guidanc, Vol. 32, No. 6 (2012), pp.99-102.
Google Scholar