[1]
Merrill W. Beckstead: Combustion Mechanisms of Composite Solid Propellants. 19th JANNAF Combustion Meeting, Vol. II(1982), pp.93-100.
Google Scholar
[2]
Merrill W. Beckstead, Karthik V. Puduppakkam, and Vigor YangT: Modeling and Simulation of Combustion of Solid Propellant Ingredients Using Detailed Chemical Kinetics. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, (2004).
DOI: 10.2514/6.2004-4036
Google Scholar
[3]
Q. Jing, M. W. Beckstead, and M. B. Jeppson: Influence of AP Solid-Phase Decomposition on Temperature Profile and Sensitivity. AIAA, (1997).
DOI: 10.2514/6.1998-448
Google Scholar
[4]
N. E. Ermolin, O. P. Korobeinichev, A. G. Tereshchenko, and V. M. Fomin: Combustion, Explosion and Shock Waves, Vol. 18. 1 (1982), pp.36-38.
DOI: 10.1007/bf00783928
Google Scholar
[5]
T. L. Boggs., A. I. Atwood, P. O. Curran, T. P. Parr, D. Hanson-Parr, D. Paull, J. Wiknich, and C. F. Price: Journal of Propulsion and Power, Vol. 15(1999), pp.748-752.
DOI: 10.2514/2.5523
Google Scholar
[6]
M. B. Jeppson, M. W. Beckstead, and Q. Jing: A Kinetic Model for the Premixed Combustion of a Fine AP/HTPB Composite Propellant. 35th JANNAF Combustion Meeting, Vol. I(1998), p.639.
DOI: 10.2514/6.1998-447
Google Scholar
[7]
O. P. Korobeinichev, N. E. Ermolin, A. A. Chernov and I. D. Emelyanov: Combustion, Explosion and Shock Waves, Vol. 28(1992), pp.53-59.
Google Scholar
[8]
O. P. Korobeinichev, A. A. Chernov, E. D. Emel'yanov, N. E. Ermolin and T. V. Trofimycheva: Combustion, Explosion and Shock Waves, Vol. 26 (1990), pp.46-55.
Google Scholar
[9]
R. L. Foster and R. R. Miller: The Burn Rate Temperature Sensitivity of Aluminized and Non-Aluminized HTPB Propellants. JANNAF Propulsion Meeting, Vol. IV(1981), pp.667-683.
Google Scholar
[10]
Scott A. Felt: Two-dimensional Modeling of AP Composite Propellant Flame Structure with Detailed Kinetics. Thesis for doctor, Department of Chemical Engineering, Brigham Young University, Provo, UT, (2004).
Google Scholar
[11]
Matthew L. Gross: Two-dimensional Modeling of AP/HTPB Utilizing a Vorticity Formulation and One-dimensional Modeling of AP and AND. Thesis for doctor, Department of Chemical Engineering, Brigham Young University, Provo, UT, (2007).
Google Scholar
[12]
Alexandre Ern: Vorticity-Velocity Modeling of Chemically Reacting Flows. Thesis for doctor, Yale University, USA, (1994).
Google Scholar
[13]
Habib N. Najm, Peter S. Wyckoff, and Omar M. Knio: Journal of Computational Physics, Vol. 143. 2 (1998), pp.381-402.
Google Scholar
[14]
Merrill W. Beckstead, M. Tanaka, Q. Jing and M. B. Jeppson: An Ammonium Perchlorate Model Based on a Detailed Kinetic Mechanism. 33rd JANNAF Combustion Meeting, Vol. II, pp.21-34.
Google Scholar
[15]
R. Behrens and L. Minier: The Thermal Decomposition Behavior of Ammonium Perchlorate and of an Ammonium Perchlorate-Based Composite Propellant. 33rd JANNAF Combustion Meeting, pp.1-19.
DOI: 10.2172/653952
Google Scholar
[16]
K.J. Kraeutle, The Response of Ammonium Perchlorate to Thermal Stimulus. Response of Ammonium Perchlorate to Thermal and Mechanical Shock Stimuli. Comp. by T.L. Boggs, 1990, Naval Weapons Center, China Lake, CA.
Google Scholar
[17]
N. E. Ermolin: Combustion, Explosion and Shock Waves, Vol. 31(1995), pp.555-565.
Google Scholar
[18]
S. Balay, K. Buschelman, V. Eijkhout and etc., PETSc Users Manual. Mathematics and Computer Science Division, Argonne National Laboratory, Revision 3. 0. 0.
Google Scholar
[19]
M.K. King, Model for Steady State Combustion of Unimodal Composite Solid Prepellants. AIAA 16th Aerospace Sciences Meeting, 1978, pp.78-216.
DOI: 10.2514/6.1978-216
Google Scholar