ECOP Based Comparative Study of Thermodynamic Cycles

Article Preview

Abstract:

This study extends the application of thermo-ecological optimization technique for different thermodynamic cycles such as Brayton, Rankine, Otto. The ECOP function for these cycles will be developed and tested for efficiencies and entropy generations. And graphical representation of these developed ECOP functions will be presented in terms of governing parameters. The comparisons of all common cycles are presented by using finite-time ecological optimization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

655-659

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bejan, A, (1987): Advanced Engineering Thermodynamics, Wiley-Interscience Publication, New York, 758.

Google Scholar

[2] P. Chambadal, Les Centrales Nuclearies, Armand Colin, Paris, 1957, p.41–58.

Google Scholar

[3] I.I. Novikov, Atommaya Energiya 3 (1957) 409; English translation: J. Nuclear Energy II 7 (1958) 125.

Google Scholar

[4] F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Amer. J. Phys. 43 (1975) 22–24.

DOI: 10.1119/1.10023

Google Scholar

[5] F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69 (1991) 7465.

DOI: 10.1063/1.347562

Google Scholar

[6] Yan, Z. J., 1993: Comment on An ecological optimization criterion for finite-time heat engines, J. Appl. Phys., 73, 3583.

DOI: 10.1063/1.354041

Google Scholar

[7] C.Y. Cheng, C.K. Chen, Ecological optimization of an irreversible Brayton heat engine, J. Phys. D: Appl. Phys. 32 (1999) 350–357.

DOI: 10.1088/0022-3727/32/3/024

Google Scholar

[8] B. Sahin, A. Kodal, S.S. Kaya, A comparative performance analysis of irreversible regenerative reheating Joule–Brayton engines under maximum power density and maximum power conditions, J. Phys. D: Appl. Phys. 31 (1998) 2125–2131.

DOI: 10.1088/0022-3727/31/17/009

Google Scholar

[9] Chen, L., Zheng, J., Sun, F., Wu, C. (2002b) Performance Comparison of an Irreversible Closed Brayton CycleUnder Maximum Power Density and Maximum Power Conditions, Exergy, an International Journal, 2: 345-351.

DOI: 10.1016/s1164-0235(02)00070-5

Google Scholar

[10] Şahin, B., Kodal, A., Kaya, S. S. (1998) A Comparative Performance Analysis of endoreversible dual cycle under maximum ecological function and maimum power conditions, Exergy, Int. J., 2, 173-185.

DOI: 10.1016/s1164-0235(02)00071-7

Google Scholar

[11] Orlov VN, Berry RS. Power and efficiency limits for internal-combustion engines via methods of finite-time thermodynamics. J Appl Phys 1993; 74(10): 4317–22.

DOI: 10.1063/1.354396

Google Scholar

[12] Angulo-Brown F, Fernandez-Betanzos J, Diaz-Pico CA. Compression ratio of an optimized Otto-cycle model. Eur J Phys 1994; 15(1): 38–42.

DOI: 10.1088/0143-0807/15/1/007

Google Scholar

[13] Klein SA. An explanation for observed compression ratios in internal-combustion engines. Trans ASME J Eng Gas-Turbine Power 1991; 113(4): 511–3.

DOI: 10.1115/1.2906270

Google Scholar

[14] Chen L, Wu C, Sun F, Wu C. Heat transfer effects on the network output and efficiency characteristics for an air standard Otto-cycle. Energy Convers Manage 1998; 39(7): 643–8.

DOI: 10.1016/s0196-8904(97)10003-6

Google Scholar

[15] Scully MO. Quantum afterburner: improving the efficiency of an ideal heat-engine. Phys Rev Lett 2002; 88: 050602-1-4.

DOI: 10.1103/physrevlett.88.050602

Google Scholar

[16] Ust Y. Ecological Performance Analysis of Irreversible OTTO Cycle", Journal of Engineering and Natural Sciences, YTU-Sigma Volume 29, Number 5, pp.106-117, (2005).

Google Scholar

[17] Y. Ust, Ecological performance analysis and optimization of power generation systems, PhD thesis, Progress Report, Yildiz Technical University, Turkey, 2004 (in Turkish).

Google Scholar

[18] Y. Ust, B. Sahin, O.S. Sogut, Performance analysis and optimization of an irreversible dual cycle based on ecological coefficient of performance criterion, Appl. Energy (2005), in press.

DOI: 10.1016/j.apenergy.2004.08.005

Google Scholar

[19] Ust Y., Şahin, B., Kodal, A., 2005, Performance of irreversible Brayton heat engine based on ecological coefficient of performance criterion, Int. J., 2, 94-101.

DOI: 10.1016/j.ijthermalsci.2005.04.005

Google Scholar