[1]
Bejan, A, (1987): Advanced Engineering Thermodynamics, Wiley-Interscience Publication, New York, 758.
Google Scholar
[2]
P. Chambadal, Les Centrales Nuclearies, Armand Colin, Paris, 1957, p.41–58.
Google Scholar
[3]
I.I. Novikov, Atommaya Energiya 3 (1957) 409; English translation: J. Nuclear Energy II 7 (1958) 125.
Google Scholar
[4]
F.L. Curzon, B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Amer. J. Phys. 43 (1975) 22–24.
DOI: 10.1119/1.10023
Google Scholar
[5]
F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69 (1991) 7465.
DOI: 10.1063/1.347562
Google Scholar
[6]
Yan, Z. J., 1993: Comment on An ecological optimization criterion for finite-time heat engines, J. Appl. Phys., 73, 3583.
DOI: 10.1063/1.354041
Google Scholar
[7]
C.Y. Cheng, C.K. Chen, Ecological optimization of an irreversible Brayton heat engine, J. Phys. D: Appl. Phys. 32 (1999) 350–357.
DOI: 10.1088/0022-3727/32/3/024
Google Scholar
[8]
B. Sahin, A. Kodal, S.S. Kaya, A comparative performance analysis of irreversible regenerative reheating Joule–Brayton engines under maximum power density and maximum power conditions, J. Phys. D: Appl. Phys. 31 (1998) 2125–2131.
DOI: 10.1088/0022-3727/31/17/009
Google Scholar
[9]
Chen, L., Zheng, J., Sun, F., Wu, C. (2002b) Performance Comparison of an Irreversible Closed Brayton CycleUnder Maximum Power Density and Maximum Power Conditions, Exergy, an International Journal, 2: 345-351.
DOI: 10.1016/s1164-0235(02)00070-5
Google Scholar
[10]
Şahin, B., Kodal, A., Kaya, S. S. (1998) A Comparative Performance Analysis of endoreversible dual cycle under maximum ecological function and maimum power conditions, Exergy, Int. J., 2, 173-185.
DOI: 10.1016/s1164-0235(02)00071-7
Google Scholar
[11]
Orlov VN, Berry RS. Power and efficiency limits for internal-combustion engines via methods of finite-time thermodynamics. J Appl Phys 1993; 74(10): 4317–22.
DOI: 10.1063/1.354396
Google Scholar
[12]
Angulo-Brown F, Fernandez-Betanzos J, Diaz-Pico CA. Compression ratio of an optimized Otto-cycle model. Eur J Phys 1994; 15(1): 38–42.
DOI: 10.1088/0143-0807/15/1/007
Google Scholar
[13]
Klein SA. An explanation for observed compression ratios in internal-combustion engines. Trans ASME J Eng Gas-Turbine Power 1991; 113(4): 511–3.
DOI: 10.1115/1.2906270
Google Scholar
[14]
Chen L, Wu C, Sun F, Wu C. Heat transfer effects on the network output and efficiency characteristics for an air standard Otto-cycle. Energy Convers Manage 1998; 39(7): 643–8.
DOI: 10.1016/s0196-8904(97)10003-6
Google Scholar
[15]
Scully MO. Quantum afterburner: improving the efficiency of an ideal heat-engine. Phys Rev Lett 2002; 88: 050602-1-4.
DOI: 10.1103/physrevlett.88.050602
Google Scholar
[16]
Ust Y. Ecological Performance Analysis of Irreversible OTTO Cycle", Journal of Engineering and Natural Sciences, YTU-Sigma Volume 29, Number 5, pp.106-117, (2005).
Google Scholar
[17]
Y. Ust, Ecological performance analysis and optimization of power generation systems, PhD thesis, Progress Report, Yildiz Technical University, Turkey, 2004 (in Turkish).
Google Scholar
[18]
Y. Ust, B. Sahin, O.S. Sogut, Performance analysis and optimization of an irreversible dual cycle based on ecological coefficient of performance criterion, Appl. Energy (2005), in press.
DOI: 10.1016/j.apenergy.2004.08.005
Google Scholar
[19]
Ust Y., Şahin, B., Kodal, A., 2005, Performance of irreversible Brayton heat engine based on ecological coefficient of performance criterion, Int. J., 2, 94-101.
DOI: 10.1016/j.ijthermalsci.2005.04.005
Google Scholar