Impact of Pulse Quenching Effect on Sensitive Area at Advanced Technologies

Article Preview

Abstract:

The impact of pulse quenching effect on the sensitive area is evaluated by using three-dimensional technology computer-aided design (TCAD) numerical simulation. Simulation results present that the pulse quenching effect could effectively reduce the sensitive area of PMOS transistors. By adopting the off-state gate isolation technique, the sensitive area is further reduced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

693-696

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. A. Amusan, A. L. Witulski, L. W. Massengill, et al. , Charge collection and charge sharing in a 130nm CMOS technology, IEEE Transaction on Nuclear Science 53 (6) (2006) 3253–3258.

DOI: 10.1109/tns.2006.884788

Google Scholar

[2] J. R. Ahlbin, M. J. Gadlage, N. M. Atkinson, et al. , Effect of multiple-transistor charge collection on single-event transient pulse widths, in: Proceedings of the IEEE International Reliability Physics Symposium (IRPS), May, 2010, pp.198-201.

DOI: 10.1109/irps.2010.5488828

Google Scholar

[3] V. B. Sheshadri, B. L. Bhuva, R. A. Reed, et al. , Effects of multi-node charge collection in flip-flop designs at advanced technology Nodes, in: Proceedings of the IEEE International Reliability Physics Symposium (IRPS), May, 2010, pp.1026-1030.

DOI: 10.1109/irps.2010.5488683

Google Scholar

[4] R. Harada, Y. Mitsuyama, M. Hashimoto, et al. , Neutron induced single event multiple transients with voltage scaling and body biasing, in: Proceedings of the IEEE International Reliability Physics Symposium (IRPS), April, 2011, pp.253-257.

DOI: 10.1109/irps.2011.5784485

Google Scholar

[5] S. Pagliarini, F. Kastensmidt, L. Entrena, et al. , Analyzing the impact of single-event-induced charge sharing in complex circuits, IEEE Transaction on Nuclear Science, 58 (6) (2011) 2768-2775.

DOI: 10.1109/tns.2011.2168239

Google Scholar

[6] J. R. Ahlbin, L. W. Massengill, B. L. Bhuva, et al. , Single-event transient pulse quenching in advanced CMOS logic circuits, IEEE Transaction on Nuclear Science, 56 (6) (2009) 3050-3056.

DOI: 10.1109/tns.2009.2033689

Google Scholar

[7] N. M. Atkinson, A. F. Witulski, W. T. Holman, et al. , Layout technique for single-event transient mitigation via pulse quenching, IEEE Transaction on Nuclear Science, 58 (3) (2011) 885-890.

DOI: 10.1109/tns.2010.2097278

Google Scholar

[8] He Yibai, Chen Shuming, Chen Jianjun, et al. Impact of Circuit Placement on Single Event Transients in 65 nm Bulk CMOS Technology. IEEE Transactions on Nuclear Science, 2012, 59(6): 2772-2777.

DOI: 10.1109/tns.2012.2218256

Google Scholar

[9] Du Yankang, Chen Shuming, Liu Biwei. Impact of Pulse Quenching Effect on Soft Error Vulnerabilities in Combinational Circuits Based on Standard Cells. Microelectronics Journal, 2013, 44: 65-71.

DOI: 10.1016/j.mejo.2012.11.011

Google Scholar

[10] N. Seifert, V. Ambrose, B. Gill, et al. On The Radiation-Induced Soft Error Performance of Hardened Sequential Elements in Advanced Bulk CMOS Technologies. Proceeding of 48th International Reliability Physics Symposium, 2010, pp: 188-197.

DOI: 10.1109/irps.2010.5488831

Google Scholar