[1]
A. E. Mehrad Ehsani, Yi Min Gao, Sebastian E. Gay, Fundamentals of Regenerative Braking, in Modern Electric, Hybrid Electric, and Fuel Cell Vehicle, 2005, p.333–345.
DOI: 10.1201/9781420037739.ch11
Google Scholar
[2]
G. Celentano and R. Iervolino, Car brake system modeling for longitudinal control design, in Control Applications, …, 2003, p.25–30.
DOI: 10.1109/cca.2003.1223253
Google Scholar
[3]
T. Johansen, Hybrid control strategies in ABS, in American Control Conference, 2001, p.1704–1705.
Google Scholar
[4]
P. E. Wellstead and N. B. O. L. Pettit, Analysis and redesign of an antilock brake system controller, IEE Proceedings - Control Theory and Applications, vol. 144, no. 5, p.413, (1997).
DOI: 10.1049/ip-cta:19971441
Google Scholar
[5]
A. Harifi, A. Aghagolzadeh, G. Alizadeh, and M. Sadeghi, Designing a sliding mode controller for slip control of antilock brake systems, Transportation Research Part C: Emerging Technologies, vol. 16, no. 6, p.731–741, Dec. (2008).
DOI: 10.1016/j.trc.2008.02.003
Google Scholar
[6]
Y. et al. Chin, Sliding-Mode ABS Wheel-Slip Control, in American Control Conference, 1992, 1992, p.1– 8.
DOI: 10.23919/acc.1992.4792007
Google Scholar
[7]
A. M. A. Soliman, M. M. S. Kaldas, and T. U. Braunschweig, An Investigation of Anti-lock Braking System for Automobiles, in SAE Technical Paper Series, (2012).
DOI: 10.4271/2012-01-0209
Google Scholar
[8]
A. Badie Sharkawy, Genetic fuzzy self-tuning PID controllers for antilock braking systems, Engineering Applications of Artificial Intelligence, vol. 23, no. 7, p.1041–1052, Oct. (2010).
DOI: 10.1016/j.engappai.2010.06.011
Google Scholar
[9]
X. Huang and J. Wang, Model predictive regenerative braking control for lightweight electric vehicles with in-wheel motors, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Apr. (2012).
DOI: 10.1177/0954407012440934
Google Scholar
[10]
H. B. Pacejka and I. J. M. Besselink, Magic Formula Tyre Model with Transient Properties, Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, no. 27: S1, p.234–249, (1997).
DOI: 10.1080/00423119708969658
Google Scholar
[11]
L. Sha, Q. Du, and K. W. E. Cheng, ABS Control of Electric Vehicle on Various Road Conditions, 2011 International Conference on Control, Automation and Systems Engineering (CASE), p.1–4, Jul. (2011).
DOI: 10.1109/iccase.2011.5997649
Google Scholar
[12]
H. Raza and P. A. Ioannou, Modeling and control design for a computer-controlled brake system, IEEE Transactions on Control Systems Technology, vol. 5, no. 3, p.279–296, May (1997).
DOI: 10.1109/87.572126
Google Scholar
[13]
O. Tur, O. Ustun, and R. N. Tuncay, An Introduction to Regenerative Braking of Electric Vehicles as Anti-Lock Braking System, in 2007 IEEE Intelligent Vehicles Symposium, 2007, no. 5, p.944–948.
DOI: 10.1109/ivs.2007.4290238
Google Scholar
[14]
H. X. Li and H. B. Gatland, Conventional fuzzy control and its enhancement., IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society, vol. 26, no. 5, p.791–7, Jan. (1996).
DOI: 10.1109/3477.537321
Google Scholar
[15]
T. Vehicle Safety Standards, Department of Infrastructure and R. D. and L. Government., Vehicle Standard ( Australian Design Rule 31 / 01 – Brake Systems for Passenger Cars ) 2005, (2010).
Google Scholar
[16]
E. Carlos and E. Ferro, Technical Overview of Brake Performance Testing for Original Equipment and Aftermarket Industries in The US And European Markets, in Link Technical Report FEV2005-01, 2005, p.1–27.
Google Scholar