[1]
Martins, J.M., Mohamed, Z., Tokhi, M.O., Sá da Costa, J. and Botto, M.A., Approaches for dynamic modelling of flexible manipulator systems. IEEE Proceedings-Control Theory and Application, 2003. 150(4): pp.401-411.
DOI: 10.1049/ip-cta:20030496
Google Scholar
[2]
Mansour, T., A. Konno, and M. Uchiyama, Modified PID Control of a Single-Link Flexible Robot Advanced Robotics, 2008. 22(4): pp.433-449.
DOI: 10.1163/156855308x294671
Google Scholar
[3]
Cannon, R.H. and E. Schmitz, Initial experiment on the end-point control of a flexible one-link robot. International Journal of Robotics Research, 1984. 3(3): pp.62-75.
DOI: 10.1177/027836498400300303
Google Scholar
[4]
Hasting, G.G. and W.J. Book, A linear dynamic model for flexible robot manipulators. IEEE Control Systems Magazine, 1987. 7: pp.61-64.
Google Scholar
[5]
A. Arisoy, M.G., O.S. Bogosyan Partial Feedback Linearization Control of A Single Flexible Link Robot Manipulator in IEEE Proceedings of 2nd International Conference on Recent Advances in Space Technologies. (2005).
DOI: 10.1109/rast.2005.1512577
Google Scholar
[6]
Moser, A.N., Designing controllers for flexible structures with H-infinity/μ-synthesis IEEE Control Systems Magazine, 1993. 13(2): pp.79-89.
DOI: 10.1109/37.206989
Google Scholar
[7]
Feliu, V., Rattan, K.S. and Brown, H.B., Adaptive control of a single-link flexible manipulator. IEEE Control Systems Magazine, 1990. 10(2): pp.29-33.
DOI: 10.1109/37.45791
Google Scholar
[8]
Moallem, M., Khorasani, K. and Patel, R.V., Inversion-based sliding control of a flexible-link manipulator. International Journal of Control, 1998. 71(3): pp.477-490.
DOI: 10.1080/002071798221786
Google Scholar
[9]
Gutierrez, L.B., Lewis, P.L. and Lowe, J.A., Implementation of a neural network tracking controller for a single flexible link: comparison with PD and PID controllers. IEEE Transactions on Industrial Electronics, 1998. 45(3): pp.307-318.
DOI: 10.1109/41.681230
Google Scholar
[10]
Yuan-Gang T., F. -C.S., Zeng-Qi S., and Ting-Liang H., Tip Position Control of a Flexible-Link Manipulator with Neural Networks. International Journal of Control, Automation, and Systems, 2006. 4(3): pp.308-317.
Google Scholar
[11]
Moudgal, V.G., Passino, K.M. and Yurkovich, S., Rule-based control for a flexible-link robot. IEEE Transactions on Control Systems Technology, 1994. 2(4): pp.392-405.
DOI: 10.1109/87.338648
Google Scholar
[12]
Loudini, M., Timoshenko Beam Theory based Dynamic Modeling of Lightweight Flexible Link Robotic Manipulators, in Advances in Robot Manipulators, E.H. (Ed. ), Editor. 2010. pp.625-650.
DOI: 10.5772/9661
Google Scholar
[13]
Subudhi, B. a.M., A.S., Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robotics and Autonomous Systems, 2002. 41: pp.257-270.
DOI: 10.1016/s0921-8890(02)00295-6
Google Scholar
[14]
Azad, A.K.M., and Tokhi, M.O., Contro Engineering Series. Flexible Robot Manipulators: Modelling, simulation and control. Vol. 68. 2008, London, United Kingdom: The Institution of Engineering and Technology.
Google Scholar
[15]
Quanser, Student Handout. Rotary Flexible Joint Module.
Google Scholar
[16]
Franklin, G.F., J.D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. 1987: Addison-Wesley Publishing Company Inc.
Google Scholar
[17]
Mariam B., M.S., Walid G., State-Feedback and Linear Quadratic Regulator Applied to a Single-Link Flexible Manipulator. Proceedings of the 2009 IEEE International Conference on Robotics and Biomimetics, 2009: pp.1381-1386.
DOI: 10.1109/robio.2009.5420822
Google Scholar