Effect of Bearing Mobility on the Kinetics Performance of TKA during Deep Flexion: A Computational Simulation

Article Preview

Abstract:

Characterizing the relative performance between mobile bearing and fixed bearing knee prosthesis remains seen as a difficult task as the previous short-term and mid-term clinical studies disable to observe any evidence of superiority of one design over another. The aim of the present study is to characterize the mechanics comparison between both designs of prosthesis during deep flexional motion with tibial rotation. Three dimensional (3D) FE model of clinically used mobile bearing posterior stabilized (PS) prosthesis was developed from its CAD data. Explicit finite element model was used to simulate the dynamic loaded deep flexional motion from 0 to 135° with neutral and 10° tibial rotation. Fixed bearing prosthesis was represented by fixing the tibial insert to the tibial component. The fixed bearing design was found relatively sensitive to flexion motion and tibial rotation in terms of contact area and maximum shear stress as compared to the mobile bearing design. Tibial rotation increased the peak value of maximum shear stress up to 58 MPa for the fixed bearing, on the contrary, the mobile bearing maintained the peak value of maximum shear stress at 31 MPa even with tibial axial rotation. The influence of post-cam design was also discussed in this study. The mobile bearing has an ability to maintain conformity and relatively low shear stress during very deep flexion with tibial axial rotation in comparison to the fixed bearing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

899-906

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Jain, B.E. Stein, R.L. Skolasky, L.C. Jones, M.W. Hungerford, Total Joint Arthroplasty in Patients With Rheumatoid Arthritis: A United States Experience From 1992 Through 2005, J. Arthroplasty. 27(6) (2012) 881-888.

DOI: 10.1016/j.arth.2011.12.027

Google Scholar

[2] K. Nakayama, S. Matsuda, H. Miura, H. Higaki, K. Otsuka , Y. Iwamoto, Contact stress at the post-cam mechanism in posterior-stabilised total knee arthroplasty, J. Bone Joint Surg. Br. 87-B(4) (2005) 483-488.

DOI: 10.1302/0301-620x.87b4.15684

Google Scholar

[3] Z.D. Post, W. Y. Matar, T. van de Leur, E.L. Grossman, M.S. Austin, Mobile-Bearing Total Knee Arthroplasty: Better Than a Fixed-Bearing?, J. Arthroplasty. 25(6) (2010) 998-1003.

DOI: 10.1016/j.arth.2009.07.014

Google Scholar

[4] W.C.H. Jacobs, B. Christen, A.B. Wymenga, A. Schuster, D.B. Schaaf, A. Ham, U. Wehrli, Functional performance of mobile versus fixed bearing total knee prostheses: a randomised controlled trial, Knee Surgery, Sports Traumatology, Arthroscopy. 20(8) (2012).

DOI: 10.1007/s00167-011-1684-9

Google Scholar

[5] G.R. Scuderi, D. R. Hedden, J.A. Maltry, S.M. Traina, M.B. Sheinkop, M.A. Hartzband, Early Clinical Results of a High-Flexion, Posterior-Stabilized, Mobile-Bearing Total Knee Arthroplasty: A US Investigational Device Exemption Trial, J. Arthroplasty. 27(3) (2012).

DOI: 10.1016/j.arth.2011.06.011

Google Scholar

[6] S. Bhan, R. Malhotra, E.K. Kiran, S. Shukla, M. Bijjawara, A Comparison of Fixed-Bearing and Mobile-Bearing Total Knee Arthroplasty at a Minimum Follow-up of 4. 5 Years, J. Bone Joint Surg. 87(10) (2005) 2290-2296.

DOI: 10.2106/00004623-200510000-00020

Google Scholar

[7] P. Aglietti, A. Baldini, R. Buzzi, D. Lup, L. De Luca, Comparison of Mobile-Bearing and Fixed-Bearing Total Knee Arthroplasty: A Prospective Randomized Study, J. Arthroplasty. 20(2) (2005) 145-153.

DOI: 10.1016/j.arth.2004.09.032

Google Scholar

[8] M.C. Evans, E. M. Parsons, R.D. Scott, T.S. Thornhill, D. Zurakowski, Comparative Flexion After Rotating-Platform vs Fixed-Bearing Total Knee Arthroplasty, J. Arthroplasty. 21(7) (2006) 985-991.

DOI: 10.1016/j.arth.2005.12.007

Google Scholar

[9] H. Haider, K. Garvin, Rotating Platform versus Fixed-bearing Total Knees: An In Vitro Study of Wear, Clin. Orthop. Relat. Res. 466(11) (2008) 2677-2685.

DOI: 10.1007/s11999-008-0463-5

Google Scholar

[10] H.M.J. McEwen, P. I. Barnett, C.J. Bell, R. Farrar, D.D. Auger, M.H. Stone, J. Fisher, The influence of design, materials and kinematics on the in vitro wear of total knee replacements, J. Biomech. 38(2) (2005). 357-365.

DOI: 10.1016/j.jbiomech.2004.02.015

Google Scholar

[11] A. Sharma, R. D. Komistek, C.S. Ranawat, D.A. Dennis, M.R. Mahfouz, In Vivo Contact Pressures in Total Knee Arthroplasty, J. Arthroplasty. 22(3) (2007) 404-416.

DOI: 10.1016/j.arth.2006.07.008

Google Scholar

[12] N.J. Dahlkvist, P. Mayo, B.B. Seedhom, Forces during squatting and rising from a deep squat, Engineering in Medicine. 11(2) (1982) 69-76.

DOI: 10.1243/emed_jour_1982_011_019_02

Google Scholar

[13] K. Kobayashi, T. Kakinoki, Y. Tanabe, M. Sakamoto, Mechanical properties of ultra high molecular weight polyethylene under impact compression-Property change with gamma irradiation and dynamic stress-strain analysis of artificial hip-joint, J Japanese Society for Experimental Mech. 3 (2003).

Google Scholar

[14] A.C. Godest, M. Beaugonin, E. Haug, M. Taylor, P.J. Gregson, Simulation of a knee joint replacement during a gait cycle using explicit finite element analysis, J. Biomech. 35 (2002) 267-275.

DOI: 10.1016/s0021-9290(01)00179-8

Google Scholar

[15] J.P. Halloran, A.J. Petrella, P.J. Rullkoetter, Explicit finite element modeling of total knee replacement mechanics, J. Biomech. 38(2) (2005) 323-331.

DOI: 10.1016/j.jbiomech.2004.02.046

Google Scholar

[16] S. Sathasivam, P.S. Walker, Computer model to predict subsurface damage in tibial inserts of total knees, J. Orthop. Res. 16(5) (1998) 564-571.

DOI: 10.1002/jor.1100160507

Google Scholar

[17] B. Innocenti, S. Pianigiani, L. Labey, J. Victor, J. Bellemans, Contact forces in several TKA designs during squatting: A numerical sensitivity analysis, J. Biomech. 44(8) (2011) 1573-1581.

DOI: 10.1016/j.jbiomech.2011.02.081

Google Scholar

[18] T. Nagura, C.O. Dyrby, E.J. Alexander, T.P. Andriacchi, Mechanical loads at the knee joint during deep flexion, J. Orthop. Res. 20(4) (2002) 881-886.

DOI: 10.1016/s0736-0266(01)00178-4

Google Scholar

[19] G. Li, S. Zayontz, L.E. DeFrate, E. Most, J.F. Suggs, H.E. Rubash, Kinematics of the knee at high flexion angles: an in vitro investigation, J. Orthop. Res. 22(1) (2004) 90-95.

DOI: 10.1016/s0736-0266(03)00118-9

Google Scholar

[20] K. Kanekasu, S.A. Banks, S. Honjo, O. Nakata, H. Kato, Flouroscopic analysis of knee arthroplasty kinematics during deep flexion kneeling, J. Arthroplasty. 19(8) (2004) 998-1003.

DOI: 10.1016/j.arth.2004.03.012

Google Scholar

[21] S.K.T. Puloski, R.W. McCalden, S.J. MacDonald, C.H. Rorabeck, R.B. Bourne, Tibial post wear in posterior stabilized total knee arthroplasty: Unrecognized source of polyethylene debris, J. Bone Joint Surg. 83(3) (2001) 390-397.

DOI: 10.2106/00004623-200103000-00011

Google Scholar

[22] S. Sathasivam, P. S. Walker, P.A. Campbell, K. Rayner, The effect of contact area on wear in relation to fixed bearing and mobile bearing knee replacements, J. Biomed. Mater. Res. 58(3) (2001) 282-290.

DOI: 10.1002/1097-4636(2001)58:3<282::aid-jbm1018>3.0.co;2-s

Google Scholar

[23] Y. Akasaki, S. Matsuda, T. Shimoto, H. Miura, H. Higaki, Y. Iwamoto, Contact stress analysis of the conforming post-cam mechanism in posterior-stabilized total knee arthroplasty, J. Arthroplasty. 23(5) (2008) 736-743.

DOI: 10.1016/j.arth.2007.05.023

Google Scholar

[24] D.D. D'Lima, M. Trice, A.G. Urquhart, C.W. Jr. Colwell, Comparison Between the Kinematics of Fixed and Rotating Bearing Knee Prostheses, Clin. Orthop. Relat. Res. 380 (2000) 151-157.

DOI: 10.1097/00003086-200011000-00020

Google Scholar

[25] C.H. Huang, J.J. Liau, C.H. Huang, C.K. Cheng, Influence of post-cam design on stresses on posterior-stabilized tibial posts, Clin. Orthop. Relat. Res. 450(2006) 150-156.

DOI: 10.1097/01.blo.0000218739.76871.28

Google Scholar

[26] T.J.A. Momersteeg, L. Blankevoort, R. Huiskes, J.G.M. Kooloos, J.M.G. Kauer, J.C.M. Hendriks, The effect of variable relative insertion orientation of human knee bone-ligament-bone complexes on the tensile stiffness, J. Biomech. 28(6) (1995).

DOI: 10.1016/0021-9290(94)00121-j

Google Scholar

[27] G.A. Engh, R. L. Zimmerman, N.L. Parks, C.A. Engh, Analysis of Wear in Retrieved Mobile and Fixed Bearing Knee Inserts, J Arthroplasty 24(6, Supplement) (2009) 28-32.

DOI: 10.1016/j.arth.2009.03.010

Google Scholar