A Generalized Auxiliary Equation Method for the Quadratic Nonlinear KG Equation

Article Preview

Abstract:

A generalized auxiliary equation method with symbolic computation is used to construct more general exact solutions of the quadratic nonlinear Klein-Gordon (KG) equation. As a result, new and more general solutions are obtained. It is shown that the generalized auxiliary equation method provides a more powerful mathematical tool for solving nonlinear partial differential equations arising in the fields of nonlinear sciences.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

571-576

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Ablowitz and P.A. Clarkson: Soliton, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, New York 1991).

Google Scholar

[2] R. Hirota: Phys. Rev. Lett. Vol. 27 (1971), p.1192.

Google Scholar

[3] M.R. Miurs: Bäcklund Transformation (Springer, Berlin 1978).

Google Scholar

[4] J. Weiss, M. Tabor and G. Carnevale: J. Math. Phys. Vol. 24 (1983), p.522.

Google Scholar

[5] W. Malfliet: Am. J. Phys. Vol. 60 (1992), p.650.

Google Scholar

[6] C. Yan: Phys. Lett. A Vol. 224 (1996), p.77.

Google Scholar

[7] M.L. Wang: Phys. Lett. A Vol. 213 (1996), p.279.

Google Scholar

[8] J.H. He: Chaos Soliton. Fract. Vol. 26 (2005), p.695.

Google Scholar

[9] J.H. He: Phys. Lett. A Vol. 335 (2005), p.182.

Google Scholar

[10] J.H. He: Int. J. Modern Phys. B Vol. 10 (2006), p.1141.

Google Scholar

[11] J.H. He: Non-Perturbative Methods for Strongly Nonlinear Problems, Dissertation, (de-Verlag im Internet GmbH, Berlin 2006).

Google Scholar

[12] T.A. Abassy, M.A. El-Tawil and H.K. Saleh: Int. J. Nonlinear Sci. Numer. Simul. Vol. 5 (2004), p.327.

Google Scholar

[13] S.K. Liu, Z.T. Fu, S.D. Liu and Q. Zhao: Phys. Lett. A Vol. 289 (2001), p.69.

Google Scholar

[14] Y.B. Zhou, M.L. Wang and Y.M. Wang: Phys. Lett. A Vol. 308 (2003), p.31.

Google Scholar

[15] Sirendaoreji and J. Sun: Phys. Lett. A Vol. 309 (2003), p.387.

Google Scholar

[16] Sirendaoreji: Chaos Soliton. Fract. Vol. 19 (2004), p.147.

Google Scholar

[17] C.P. Liu and X.P. Liu: Phys. Lett. A 348 Vol. (2006), p.222.

Google Scholar

[18] Sirendaoreji: Phys. Lett. A Vol. 356 (2006), p.124.

Google Scholar

[19] S. Zhang and T.C. Xia: Phys. Lett. A Vol. 363 (2007), p.356.

Google Scholar

[20] E.J. Parkes, B.R. Duffy and P.C. Abbott: Phys. Lett. A Vol. 295 (2002), p.280.

Google Scholar

[21] M. Boiti, J.J.P. Leon, M. Manna and F. Pempinelli: Inverse Problem Vol. 2 (1986), p.271.

Google Scholar

[22] S.Y. Lou and X.B. Hu: J. Math. Phys. 38 Vol. (1997), p.6401.

Google Scholar

[23] S.Y. Lou: J. Phys. A: Math. Gen. Vol. 28 (1995), p.7227.

Google Scholar

[24] S.Y. Lou: J. Phys. A: Math. Gen. Vol. 34 (2001), p.305.

Google Scholar

[25] W.H. Huang and Y.L. Liu: Commun. Theor. Phys. Vol. 44 (2005), p.401.

Google Scholar

[26] J. Lin and F.M. Wu: Chaos Soliton. Fract. Vol. 19 (2004), p.189.

Google Scholar

[27] Y.Z. Peng: Phys. Lett. A Vol. 351 (2006), p.41.

Google Scholar