Study on the Periodic Solutions to a Superquadratic Discrete Hamiltonian System Based on Mechanics

Article Preview

Abstract:

This paper studies the periodic solutions to a superquadratic second-oder discrete type Hamiltonian system in the n dimensional Euclide space. By the variational methods and some discrete computional techniques, this paper proves the existence of solution to a new type discrete Hamiltonian system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-95

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Rabinowitz: Comm. Pure Appl. Math., 31 (1978), 157–184.

Google Scholar

[2] M. Willem: Minimax Theorems. (Berlin: Birkhauser Verlag, Basel. Boston, 1996).

Google Scholar

[3] X. Xue,C. Tang: Appl Math and Comp 196 (2008) p.494–500.

Google Scholar

[4] Z. Guo, J. Yu: J. London Math. Soc. 68 (2) (2003) p.419–430.

Google Scholar

[5] Z. Guo, J. Yu: Nonlinear Anal. 55(2003) , p.969–983.

Google Scholar

[6] C. Tang, X. Wu: J. Math. Anal. Appl. 259 (2) (2001) 386–397.

Google Scholar

[7] C. Liu, D. Zhang, C. Zhu: Adv. Math. 203 (2006), pp.568-635.

Google Scholar

[8] C. Liu, Q. Wang: Discrete cont dyn sys 32(2012), pp.2253-2270.

Google Scholar

[9] H. Hofer, E. Zehnder: Symplectic Invariants and Hamiltonian Dynamics. (Berlin: Birkhauser Verlag, Basel. Boston, 1994).

Google Scholar

[10] Y. Long: Index Theory For Symplectic Paths With Applications. (Berlin: Birkhauser Verlag, Basel. Boston, 2002).

Google Scholar