Effect of Cooling Rate on Oxidation Behaviour of Microalloyed Steel

Article Preview

Abstract:

Oxidation characteristics of a microalloyed low carbon steel were investigated by a hot rolling mill combined with acceleration cooling system over the cooling rate range from 20 to 70°C/s. The effects of cooling rate after hot rolling on microstructure and phase composition of oxide scale were examined. The results showed that the increase of the cooling rate has a significant influence on the decrease of the grain size and surface roughness of oxide scale. A higher cooling rate promotes the formation of retain wustite and primary magnetite precipitation while suppression of eutectoid α-iron precipitates. This provides the possibility to enhance potential contribution of magnetite precipitates with preferable ductility, and hence fabricates a desired oxide-scale structure under continuous post cooling conditions considering a suitable cooling rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

273-278

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Krzyzanowski, J.H. Beynon and D.C.J. Farrugia: Oxide Scale Behavior in High Temperature Metal Processing (Wiley-VCH, Darmstadt, 2010).

DOI: 10.1002/9783527630318

Google Scholar

[2] P.H. Bolt: Res. Int., Vol. 75 (2004), p.399.

Google Scholar

[3] R.Y. Chen, W.Y.D. Yuen: Oxid. Met., Vol. 59 (2003), p.433.

Google Scholar

[4] J. Paidassi: Acta Metall., Vol. 6 (1958), p.184.

Google Scholar

[5] H.A. Wriedt: in Binary Alloy Phase Diagrams, 2nd edn., edited by T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, Vol. 2, ASM Intern., Materials Park (1990), p.1739.

Google Scholar

[6] G.D. West, S. Birosca, R.L. Higginson: J. Microsc., Vol. 217 (2005), p.122.

Google Scholar

[7] X.L. Yu, Z.Y. Jiang, X.D. Wang, D.B. Wei and Q. Yang: Adv. Mat. Res., Vols. 415-417 (2012), p.853.

Google Scholar

[8] R.Y. Chen and W.Y.D. Yuen: Oxid. Met., Vol. 53 (2000), p.539.

Google Scholar

[9] J. Tominaga, K. Wakimoto, T. Mori, M. Murakami, T. Yoshimura: ISIJ, Vol. 22 (1982), p.646.

Google Scholar

[10] R. Bhattacharya, G. Jha, S. Kundu, R. Shankar, N. Gope: Surf. Coat. Tech., Vol. 201 (2006), p.526.

Google Scholar

[11] X.L. Yu, Z.Y. Jiang, X.D. Wang, D.B. Wei, Q. Yang: Adv. Mat. Res., Vols. 415-417 (2012), p.853.

Google Scholar

[12] D.B. Wei, J.X. Huang, A.W. Zhang, Z.Y. Jiang, A.K. Tieu, X. Shi and S.H. Jiao: Wear, Vol. 271 (2011), p.2417.

Google Scholar

[13] X.L. Yu, Z.Y. Jiang, D.B. Wei, C. L Zhou, Q. X Huang, D.J. Yang: Wear, (2013), in press.

Google Scholar

[14] F. Akio, I. Sadanori, H. Yoshimich, M. Toru, M. Yoichi and I. Shozo: EP patent application, 2002, EP1210993A1.

Google Scholar

[15] J.C. Herman: Ironmak. Steelmak, Vol. 28 (2001), p.159.

Google Scholar

[16] B. Gleeson, S.M. Hadavi and D.J. Young: Mater. High Temp., Vol. 17 (2000), p.11.

Google Scholar

[17] D.P. Burke, R.L. Higginson: Scripta Mater., Vol. 42 (2000), p.277.

Google Scholar

[18] S. Birosca, D. Dingley, R.L. Higginson: J. Microsc., Vol. 213 (2004), p.235.

Google Scholar