Hydrothermal Synthesis and Photocatalytic Activities of Bi2WO6 with Different Surfactant

Article Preview

Abstract:

Bismuth-based oxides have attractive photocatalytic properties under visible light. Bismuth tungstate(Bi2WO6) particles as a visible light-responsive photocatalyst were prepared by a facile hydrothermal reaction method with the different surfactant assisted using Bi(NO3)3·5H2O and Na2WO4 as raw materials at 180°C for 24h. The as-prepared samples were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis absorption spectra (UV-vis). The photocatalytic activity of Bi2WO6 crystals was evaluated using the photocatalytic oxidation of rhodamine B (RhB) at room temperature under visible light irradiation. It was found that the morphology and the band gap adsorption edge of Bi2WO6 are different with the different surfactant assisted. The widest band gap energy of Bi2WO6 obtained with SDBS assisted is 2.624eV. In addition, the Bi2WO6 powders exhibit a certain photocatalytic properties to photodegrade RhB and the maximum photocatalytic degradation rate is 32.4% using Bi2WO6 prepared with PVP assisted for 2h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

741-745

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Fujishima, A.; Honda, K. Nature 1972, 238, 37-38.

Google Scholar

[2] Zou, Z,; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625-627.

Google Scholar

[3] Kapoor, M. P.; Inagaki, S.; Yoshida, H. J. Phys. Chem. B 2005, 109, 9231-9238.

Google Scholar

[4] Kaneko, M.; Gokan, N.; Katakura, N.; et al. Chem. Commun. 2005, 12, 1625-1627.

Google Scholar

[5] Kominami, H,; Murakami, S.; Kato, J.; Kera, Y. J. Phys. Chem. B 2002, 106, 10501.

Google Scholar

[6] Tran, T. H.; Nosaka, A. Y.; Nosaka, Y. J. Phys. Chem. B 2006, 110, 25525.

Google Scholar

[7] Balcerske, W.; Ryu, S. Y.; Hoffmann, M. R. J. Phys. Chem. C 2007, 111, 15357.

Google Scholar

[8] Amano, F.; Abe, R.; Ohtani, B. Trans. Mater. Res. Soc. Jpn. 2008, 33, 173.

Google Scholar

[9] Stoltzfus, M. W.; Woodward, P. M.; Seshadri, R.; Klepeis, J. Inorg. Chem. 2007, 46, 3839-3850.

Google Scholar

[10] Zhang L.; Wang,W.; Yang, J.; Chen, Z.; et al. Appl. Catal., A 2006, 308, 105-110.

Google Scholar

[11] Fu,H.; Pan, C.; Yao, W.; Zhu,Y. J. Phys. Chem. B 2003, 104, 36-39.

Google Scholar

[12] Kudo, A.; Hijii, S. Chem. Lett. 1999, 1103.

Google Scholar

[13] Tang, J. W.; Zou, Z.G.; Ye, J. H. Catal. Lett. 2004, 92, 53.

Google Scholar

[14] Amano, F.; Nogami, K.; Tanaka, M. Langmuir 2010, 26, 7174-7180.

Google Scholar

[15] Tang, J.; Zou, Z.; Ye, J. Catal. Lett. 2004, 92, 53-56.

Google Scholar

[16] Tang, J.; Zou, Z.; Ye, J. Angew. Chem., Int. Ed. 2004, 43, 4463.

Google Scholar

[17] Tang, J.; Zou, Z.; Ye, J. J. Chem. Mater. 2004, 16, 1644.

Google Scholar

[18] Nagaveni, K,; Sivalingam, G.; Hegde, M. S.; Madras, G. Environ. Sci. Technol. 2004, 38, 1600.

Google Scholar

[19] Wong, C. C.; Chu, W. Environ. Sci. Technol. 2003, 37, 2310.

Google Scholar