An Overview of Moving Target Abnormity Behavior Identity Technology in Video Sequence

Article Preview

Abstract:

Moving target abnormity behavior identity technology is the one key base of Intelligent Video Surveillance. Object detection technology, target tracking technology, target classification technology has reached full development at present. About abnormity behavior identity technology, there have three technologies: template matching techniques, state-space techniques, Semantics Description techniques. Research situation of these technologies is introduced in this paper, and orientation of technological development of these technologies is also introduced in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2223-2226

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Thanthry, N., Emmuadi, I., Srikumar, A., Namuduri, K., Pendse, R., SVSS: Intelligent Video Surveillance System for Aircraft, IEEE Aerospace and Electronic Systems Magazine, Vol. 24, Issue 10, October 2009, pp.23-29.

DOI: 10.1109/maes.2009.5317783

Google Scholar

[2] Collins R., et al. A system for video surveillance and monitoring: VSAM final report. Carnegie Mellon University: Technical Report CMU, (2000).

Google Scholar

[3] Kenech F, Ubiquitous computing challenges in recognizing and predicting human activity, Proceedings of 2004 IEEE International Conference on Fuzzy Systems, pp.3-7.

Google Scholar

[4] C. Bregler, J. Malik, and K. Pullen. Twist based acquisition and tracking of animal and human kinematics. IJCV, 56(3): 179–194, Feb., (2004).

DOI: 10.1023/b:visi.0000011203.00237.9b

Google Scholar

[5] Y. Yacoob and M.J. Black. Parameterized modeling and recognition of activities. CVIU, 73(2): 232–247, Feb., (1999).

Google Scholar

[6] M.A. Isard and A. Blake. A mixed-state Condensation tracker with automatic model switching. In ICCV, pages 107–112, (1998).

Google Scholar

[7] C. Rao and M. Shah. View-invariance in action recognition. In CVPR, pages II: 316–322, (2001).

Google Scholar

[8] Y. Song, L. Goncalves, and P. Perona. Unsupervised learning of human motion. PAMI, 25(7): 814–827, (2003).

Google Scholar

[9] G. Mori and J. Malik. Estimating human body configurations using shape context matching. In ECCV, page III: 666 ff., (2002).

DOI: 10.1007/3-540-47977-5_44

Google Scholar

[10] J. Sullivan and S. Carlsson. Recognizing and tracking human action. In ECCV, page I: 629, (2002).

Google Scholar

[11] A. Efros, A. Berg, G. Mori, and J. Malik. Recognizing action at a distance. In ICCV, pages 726–733, Nice, France, (2003).

Google Scholar

[12] J. -H. Ahn, et al., Human tracking and silhouette extraction for human robot interaction systems, Pattern Analysis & Applications, vol. 12, pp.167-177, (2009).

DOI: 10.1007/s10044-008-0112-3

Google Scholar

[13] Zhao, T., R. Nevatia, and B. Wu, Segmentation and tracking of multiple humans in crowded environments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008. 30(7): pp.1198-1211.

DOI: 10.1109/tpami.2007.70770

Google Scholar

[14] Yang Wang, and Greg Mori, Human Action Recognition by Semi Latent Topic Models, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 31, pp.1762-1774, (2009).

DOI: 10.1109/tpami.2009.43

Google Scholar

[15] F. Lv and R. Nevatia, Single view human action recognition using key pose matching and viterbi path searching, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2007, p.1–8.

DOI: 10.1109/cvpr.2007.383131

Google Scholar

[16] J. Yin, et al., Spatio-Temporal Event Detection Using Dynamic Conditional Random Fields, in Con! Rec. 2009 the International Joint Conferences on Artificial Intelligence, pp.1321-1326.

Google Scholar

[17] R. Natarajan and P. Nevatia, View and scale invariant action recognition using multi-view shape-flow models, in Proc. IEEE Conf. Comput. Vision . Pattern Recognit., 2008, p.1–8.

DOI: 10.1109/cvpr.2008.4587716

Google Scholar

[18] N. Robertson and I. Reid, Behavior understanding in video: combined method, in Proc. IEEE Conf. Comput. Vis., 2005, vol. 1, p.808–815.

Google Scholar

[19] M. Yamamoto, H. Mitomi, F. Fujiwara, and T. Sato, Bayesian classification of task-oriented actions based on stochastic context-free grammar, in Proc. IEEE Conf. Automat. Face Gesture Recognit., 2006, p.317–323.

DOI: 10.1109/fgr.2006.28

Google Scholar

[20] A. Bobick and J. Davis, The recognition of human movement using temporal templates, IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 3, p.257–267, Mar. (2001).

DOI: 10.1109/34.910878

Google Scholar

[21] D. Weinland, R. Ronfard, and E. Boyer, Automatic discovery of action taxonomies from multiple views, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2006, vol. 2, p.1639–1645.

DOI: 10.1109/cvpr.2006.65

Google Scholar

[22] T. Mori, Y. Segawa, M. Shimosaka, and T. Sato, Hierarchical recognition of daily human actions based on continuous hidden Markov Models, in Proc. IEEE Conf. Automat. Face Gesture Recognit., 2004, p.779–784.

DOI: 10.1109/afgr.2004.1301629

Google Scholar