A Designing Method of Variable Topology-Transformable Spacecraft

Article Preview

Abstract:

Based on analysis of the designing methodology of traditional spacecraft and research on various reconfigurable structures, the designing methods of variable topology-transformable spacecraft and main parts of the processing of research are put forward. Aiming to extend the mission of space vehicle, a designing method of variable topology-transformable spacecraft are established. The CADs of two designing methods are also worked out in this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

821-825

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kuramasu R, Inoue K, Kanazawa I. Development of mechanism to extend the solar array paddle for advanced earth observing satellite (ADEOS). In: Proc. Of Sixth European Space Mechanisms and Tribology Symposium, Zurich, 1995: 73~80.

Google Scholar

[2] Takamatsu Kiyoshi, Onoda Junjiro, Higuchi Ken. New concepts of deployable truss units for large space structures. AIAA Paper 87-0868, 1987: 695~704.

DOI: 10.2514/6.1987-868

Google Scholar

[3] Takamatsu K A, Onoda J. New deployable truss concepts for large antenna structures or solar concentrators. Journal of Spacecraft and Rockets, 1991, 1(3): 330~338.

DOI: 10.2514/3.26248

Google Scholar

[4] Shahnipoor M. An introduction to smart fiactal structures and mechanisms. In: ASME 14th Biennial Conf. on Mechanical Vibration and Noise, 1993: 67~74.

Google Scholar

[5] Costabile V, Lumaca F. New antenna deployment, pointing and supporting mechanism. In: Proc. 30th AerospacemechanismsSymposium, California: NASA Conference1996: 65~76.

Google Scholar

[6] Spence B R, Sword L F. Mars pathfinder rover egress deployable ramp assembly. In: 30th Aerospace Mechanisms Symposium, NASA, (1996).

Google Scholar

[7] You Z, Pellegrino S. Cable-stifened pantographic deployable structures part 1: triangular Mast. AIAA Journal, 1996, 34(4): 813~820.

DOI: 10.2514/3.13144

Google Scholar

[8] Gehling Russell N, Amstrong Joseph H, Misra Mohan S. High-performance, flexible, deployable array development for space application. NASA N95-20532, 1995: 287~297.

Google Scholar

[9] Chirikjian G, Pamecha A, Ebert-Uphof I. Evaluating eficiency of self-reconfiguration in a class of modular robots. J. of Robotic Systems, 1996, 13(5): 317~338.

DOI: 10.1002/(sici)1097-4563(199605)13:5<317::aid-rob5>3.0.co;2-t

Google Scholar

[10] S. Murata, A. Kurokawa, Hand Kamimura, E. Yoshida, K. Tomita, and S. Kokaji. M-trap: Self-reconfigurable modular robotic system[J]. IEEE Transactions on Mechatronics, 2002, 12, 7(4): 431-441.

DOI: 10.1109/tmech.2002.806220

Google Scholar

[11] E. Yoshida and Tomita K. and Kurokawa H. and Kokaji S. Murata,S. and Kamimura. Evolutionary synthesis of dynamic motion and reconfiguration process for a modular robot M-TRAN[A]. In Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation[C], 2003(6): 1004-1010.

DOI: 10.1109/cira.2003.1222317

Google Scholar

[12] E. Yoshida, S. Murata, A. Kamimura and Hand Kokaji S. Tomita, K. and Kurokawa. A self-reconfigurable modular robot: Reconfiguration planning and experiments[J]. The International Journal of Robotics Research, 2002, 21(10-11): 903-915.

DOI: 10.1177/0278364902021010835

Google Scholar

[13] H. Kurokawa, A. Kamimura, S. Murata, E. Yoshida, K. Tomita, and S. Kokaji. M-tranII: Metamorphosis from a four-legged walker to a caterpillar[A]. In Proceedings of the Conference on Intelligent Robots and Systems[C], 2003: 2454-2459.

DOI: 10.1109/iros.2003.1249238

Google Scholar