Broadband Low-Frequency Vibration Energy Harvester with a Rolling Mass

Article Preview

Abstract:

Richness of broadband low-frequency vibration energy in environemnts makes it significant to develop broadband low-frequency vibration energy harvesters. A vibration energy harvester composed of two symmetrical cantilevered piezoelectric bimorphs and a rolling mass in a guiding channel was proposed. A prototype of the vibration energy harvester with a rolling mass was assembled and tested. The base excitation caused the rolling mass to impact with two cantilevered bimorphs repeatedly and the impacts cause the bimorphs to vibrate dramatically. Experimental results show that maximum output power and corresponding excitation frequency increased with the amplitude of base acceleration. For the prototype, the maximum output power of a piezoelectric bimorph on a resistor with the resistance of 100 kΩ was 602 μW under base acceleration with the amplitude of 1.5 g and frequency of 37 Hz, and the half power bandwidth was about 13.5% or 5 Hz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

635-639

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Roundy, P. K. Wright and J. Rabaey: Comput. Commun. Vol. 26 (2003), p.1131.

Google Scholar

[2] L. M. Miller, E. Halvorsen, T. Dong and P. K. Wright: J. Micromech. Microeng. Vol. 21 (2011), 045029.

Google Scholar

[3] H. B. Fang, J. Q. Liu, Z. Y. Xu, L. Dong, L. Wang, D. Chen, B. C. Cai and Y. Liu: Microelectron. J. Vol. 37 (2006), p.1280.

Google Scholar

[4] S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O'Donnell, C. R. Saha and S. Roy: J. Micromech. Microeng. Vol. 17 (2007), p.1257.

DOI: 10.1088/0960-1317/17/7/007

Google Scholar

[5] P. H. Wang, K. Tanaka, S. Sugiyama, X. H. Dai, X. L. Zhao and J. Q. Liu: Microsyst. Technol. Vol. 15 (2009), p.941.

Google Scholar

[6] D. Hoffmann, B. Folkmer and Y. Manoli: J. Micromech. Microeng. Vol. 19 (2009), 094001.

Google Scholar

[7] Y. Suzuki, D. Miki, M. Edamoto and M. Honzumi: J. Micromech. Microeng. Vol. 20 (2010), 104002.

DOI: 10.1088/0960-1317/20/10/104002

Google Scholar

[8] S. Moss, A. Barry, I. Powlesland, S. Galea and G. P. Carman: Smart Mater. Struct. Vol. 20 (2011), 045013.

DOI: 10.1088/0964-1726/20/4/045013

Google Scholar

[9] K. Najafi, T. Galchev, E. E. Aktakka, R. L. Peterson and J. McCullagh, in: 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), Beijing, China, 2011, p.1845.

DOI: 10.1109/transducers.2011.5969888

Google Scholar

[10] T. Galchev, H. Kim and K. Najafi: J. Microelectromech. Syst. Vol. 20 (2011), p.852.

Google Scholar

[11] H. C. Liu, C. J. Tay, C. G. Quan, T. Kobayashi and C. Lee: J. Microelectromech. Syst. Vol. 20 (2011), p.1131.

Google Scholar

[12] L. Gu: Microelectron. J. Vol. 42 (2011), p.277.

Google Scholar

[13] M. Renaud, P. Fiorini, R. Van Schaijk and C. Van Hoof: Smart Mater. Struct. Vol. 18 (2009), 035001.

DOI: 10.1088/0964-1726/18/3/035001

Google Scholar

[14] K. H. Mak, S. McWilliam, A. A. Popov and C. H. J. Fox: J. Sound Vibr. Vol. 330 (2011), p.6184.

Google Scholar

[15] M. Umeda, K. Nakamura and S. Ueha: Jpn. J. Appl. Phys. Vol. 35 (1996), p.3267.

Google Scholar