[1]
J. P. Fouque, G. Papanicolaou, R. Sircar, Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press, (2000).
Google Scholar
[2]
J. Hull and A. White, The pricing of options on assets with stochastic volatilities, Journal of Finance 42, pp.281-300, June (1987).
DOI: 10.1111/j.1540-6261.1987.tb02568.x
Google Scholar
[3]
S.L. Heston and L. Steven, A closed-form solution for options with stochastic volatility, Review of Financial Studies, 6, pp.327-343, (1993).
DOI: 10.1093/rfs/6.2.327
Google Scholar
[4]
M. Chernov, R. Gallant, E. Ghysels, and G. Tauchen, Alternative models for stock price dynamics, Journal of Econometrics, 116 p.225.
DOI: 10.1016/s0304-4076(03)00108-8
Google Scholar
[5]
2R5. 7, C2o0n0t3. and P. Tankov, Financial modelling with jump processes, Chapman Hall/CRC, (2004).
Google Scholar
[6]
J.P. Fouque, C.H. Han, A Control Variate Method to Evaluate Option Prices under Multi-factor Stochastic Volatility Models, http: /www. crm. umontreal. ca/Finance05/pdf/han. pdf.
DOI: 10.1080/14697680400000041
Google Scholar
[7]
E. Derman, M. Kamal, J. Zou, and K. Demeterfi, A guide to volatility and variance swaps, The Journal of Derivatives 6, pp.9-32, Summer (1999).
DOI: 10.3905/jod.1999.319129
Google Scholar
[8]
S. Heston and S. Nandi, Derivatives on Volatility: Some Simple Solutions Based on Observables, Federal Reserve Bank of Atlanta, Working paper, (2000).
DOI: 10.2139/ssrn.249173
Google Scholar
[9]
A. Javaheri, P. Wilmott and G. Haug, GARCH and Volatility Swaps, www. Wilmott. com, Jan. (2002).
DOI: 10.1080/14697680400000040
Google Scholar
[10]
O. Brockhaus and D. Long, Volatility swaps made simple, Risk, January, pp.92-96, (2000).
Google Scholar
[11]
P. Glasserman, Monte Carlo Methods in Financial Engineering, Springer, New York, (2004).
Google Scholar
[12]
J.M. Ma and C.L. Xu, An efficient control variate method for pricing variance derivatives, Journal of Computational and Applied Mathematics, 235, pp.108-119, (2010).
DOI: 10.1016/j.cam.2010.05.017
Google Scholar