Using Active Sliding Mode Controller Antisynchronization of Fractional-Order Chaotic Systems with Uncertainties and Disturbances

Article Preview

Abstract:

The antisynchronization behavior of fractional-order chaotic systems with parametric uncertainties and external disturbances is explored by using robust active sliding mode control method. The sufficient conditions for achieving robust antisynchronization of two identical fractional-order chaotic systems with different initial conditions and two different fractional-order chaotic systems with terms of uncertainties and external disturbances are derived based on the fractional-order derivative method. Analysis and numerical simulations are shown for validation purposes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1779-1786

Citation:

Online since:

September 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, (1999).

Google Scholar

[2] T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, IEEE Transactions on Circuits and Systems I, vol. 42, no. 8, p.485–490, (1995).

Google Scholar

[3] C. Li and G. Chen, Physica A, vol. 341, no. 1–4, p.55–61, (2004).

Google Scholar

[4] C. Li and G. Peng, Chaos, Solitons and Fractals, vol. 22, no. 2, p.443–450, (2004).

Google Scholar

[5] I. Grigorenko and E. Grigorenko, Physical Review Letters, vol. 91, no. 3, Article ID 034101, 4 pages, (2003).

Google Scholar

[6] X. Y. Wang and J. M. Song, Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, p.3351–3357, (2009).

Google Scholar

[7] G. H. Erjaee and M. Alnasr, Discrete Dynamics in Nature and Society, vol. 2009, pp.753-746, (2009).

Google Scholar

[8] H. Taghvafard and G. H. Erjaee, Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 10, p.4079–4088, (2011).

DOI: 10.1016/j.cnsns.2011.02.015

Google Scholar

[9] X. Wang and Y. He, International Journal of Modern Physics B, vol. 23, no. 31, p.5769–5777, (2009).

Google Scholar

[10] M. M. Asheghan,M. T. H. Beheshti, andM. S. Tavazoei, Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 2, p.1044–1051, (2011).

DOI: 10.1016/j.cnsns.2010.05.024

Google Scholar

[11] D. Cafagna and G. Grassi, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 21, no. 3, p.955–962, (2011).

Google Scholar

[12] S. Wang, Y. Yu, and M. Diao, Physica A, vol. 389, no. 21, p.4981–4988, (2010).

Google Scholar

[13] X. Wu and H. Wang, Nonlinear Dynamics, vol. 61, no. 3, p.407–417, (2010).

Google Scholar

[14] M. S. Tavazoei and M. Haeri, Physics Letters A, vol. 372, no. 6, p.798–807, (2008).

Google Scholar

[15] A. Razminia, V. J. Majd, and D. Baleanu, Advances in Difference Equations, vol. 2011, no. 1, article 15, (2011).

Google Scholar

[16] L. D. Zhao, J. B. Hu, and X. H. Liu, Acta Physica Sinica, vol. 59, no. 4, p.2305–2309, (2010).

Google Scholar

[17] R. Genesio and A. Tesi, Automatica, vol. 28, no. 3, p.531–548, (1992).

Google Scholar