[1]
C. Andrzej, W.T. Slawomir, An immune approach to classifying the high-dimensional datasets, Proceedings of the Interational Multiconference on Computer Science and Information Technology pp.91-96.
Google Scholar
[2]
S. L. Stephen, T. Jon, An immune network inspired evolutionary algorithm for the diagnosis of Parkinson's disease, Biosystems 94(1-2): 34-46 (2008).
Google Scholar
[3]
K.C. Tan, C.K. Goh, A.A. Mamun, E.Z. Ei, An evolutionary artificial immune system for multi-objective optimization, European Journal of Operational Research, Volume 187, Issue 2, 1 June 2008, pp.371-392.
DOI: 10.1016/j.ejor.2007.02.047
Google Scholar
[4]
C.A. Laurentys, G. Ronacher, R.M. Palhares, W.M. Caminhas, Design of an Artificial Immune System for fault detection: A Negative Selection Approach, Expert Systems with Applications, Volume 37, Issue 7, July 2010, pp.5507-5513.
DOI: 10.1016/j.eswa.2010.02.004
Google Scholar
[5]
Chien-Cheng Chang, Hwai-En Tseng, Ling-Peng Meng, Artificial immune systems for assembly sequence planning exploration, Engineering Applications of Artificial Intelligence, Volume 22, Issue 8, December 2009, pp.1218-1232.
DOI: 10.1016/j.engappai.2009.04.007
Google Scholar
[6]
Bo Chen, Chuanzhi Zang, Artificial, immune pattern recognition for structure damage classification, Computers & Structures, Volume 87, Issues 21-22, November 2009, pp.1394-1407.
DOI: 10.1016/j.compstruc.2009.08.012
Google Scholar
[7]
S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, Self-nonself discrimination in a computer, in Proceedings of the IEEE Symposium on Research in Security and Privacy. IEEE Computer Society Press, April 1994, p.202–212.
DOI: 10.1109/risp.1994.296580
Google Scholar
[8]
Gonzalez,F., D. Dasgupta, L.F. Nino, A randomized real-valued negative selection algorithm, in Proceedings of the 2nd International Conference on Artificial Immune Systems (ICARIS). LNCS, Edinburgh, UK, Springer - Verlag, 2003, pp.261-272.
DOI: 10.1007/978-3-540-45192-1_25
Google Scholar
[9]
Zhou Ji, D. Dasgupta. Real-valued negative selection algorithm with variable-sized detectors, in Proceedings Genetic and Evolutionary Computation Conference(GECCO), June , 2004, pp.287-298.
DOI: 10.1007/978-3-540-24854-5_30
Google Scholar
[10]
Zhou Ji, D. Dasgupta. V-detector: An efficient negative selection algorithm with probably adequate detector coverage , Information sciences, 2009, pp.1390-1406.
DOI: 10.1016/j.ins.2008.12.015
Google Scholar
[11]
Thomas Stibor, Philipp Mohr, Jonathan Timmis. Is negative selection appropriate for anomaly detection? , In Proceedings Geneticand Evolutionary Computation Conference(GECCO) , DC, USA, June (2005).
DOI: 10.1145/1068009.1068061
Google Scholar
[12]
G. antonin, R-trees: A dynamic index structure for spatial searching. In Proceedings of the International Conference of Management of Data (ACM SIGMOD), pages 47-57.
Google Scholar
[13]
http: /archive. ics. uci. edu/ml/datasets/Page+Blocks+Classification.
Google Scholar