[1]
Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (Abstract) [C]/Proc of the 17th ACMSIGMODSIGACT- SIGART Symposium on the Principles of Database Systems, Seattle, WA, USA (1998), p.188.
DOI: 10.1145/275487.275508
Google Scholar
[2]
Chen Ting-ting, Han Jian-min, Wang ji-yi, Li Xi-yu. Survey of K-anonymity reseach on privacy preservation. Computer Engineering and Applications, Vol. 44 (2008), pp.130-134.
Google Scholar
[3]
Qin Xiaowei, Men Aihua. The research on privacy protection based on K-anonmity. Journal of Chifeng University, Vol. 26 (2010), pp.14-16.
Google Scholar
[4]
Sweeney L. Computational Disclosure Control: Aprimer on data privacy protection. [Ph.D. Thesis, Massachusetts Institute of Technology], (2001), pp.67-82.
Google Scholar
[5]
Sweeney L. Achieving k-anonymity privacy protection using generalization and suppression . International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, Vol. 10 (2002), pp.571-588.
DOI: 10.1142/s021848850200165x
Google Scholar
[6]
LeFevre K, DeWitt D, Ramakrishnan R. Incognito: EfficientFull-domain k-anonymity [Z]. In Proc. Of theACM SIGMOD Int'l Conf on Management of Data, Baltimore, Maryland, USA, (2005), pp.49-60.
DOI: 10.1145/1066157.1066164
Google Scholar
[7]
Liu XY, Yang XC, Yu G. A representative class basedprivacy preserving data publishing approach with highprecision. Computer Science, Vol. 32 (2005), pp.368-373.
Google Scholar
[8]
Yang XC, Liu XY, Wang Bin. K-Anonymity Approaches for Supporting Multiple Constraints. Journal of Software, Vol. 17 (2006), pp.1222-1231.
Google Scholar
[9]
LeFevre K, DeWitt D, Ramakrishnan R. Mondrianmultidimensional K -anonymity [C]. Proc of 22ndICDE. Los Alamitos, USA: IEEE Computer SocietyPress, (2006), pp.25-34.
Google Scholar
[10]
Yan Hua, Liu Gui-song. Multidimensional K-anonymity Partition Method Using Entropy. Journal of University of Electronic Science and Technology of China, Vol. 36 (2007), pp.1228-1231.
Google Scholar