Thermal Analysis of a Fluid Immersed Brushless DC Motor for Aerospace Applications

Article Preview

Abstract:

In this paper, the thermal behavior of a 12kW, 12000rpm, wet-type Permanent Magnet Brushless DC motor (BLDC) with skydrol oil inside designed for electro-hydraulic actuation system (EHA) was analyzed. A 3-D computational fluid dynamics (CFD) model has been built. The influence of skydrol hydraulic oil in thermal behavior at both low-speed and high-speed conditions was discussed. The results confirm that the skydrol oil passing through the motor has different impact on the thermal performance in different conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1126-1131

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. I. Jones, The more electric aircraft: The past and the future?, Proc. IEE Colloq. Elect. Mach. Syst. More Elect. Aircr., p.1/1–1/4, (1999).

Google Scholar

[2] Saeid Habibi, and Andrew Goldenberg, Design of a New High-Performance Electro-Hydraulic Actuator, IEEE Trans. Mech., vol. 5, no. 2, pp.158-164, Jun. (2000).

Google Scholar

[3] N. Bianchi, S. Bolognani, and F. Luise, Potentials and limits of high-speed PM motors, IEEE Trans. Ind. Appl, vol. 40, no. 6, p.1570–1578, Nov. /Dec. (2004).

DOI: 10.1109/tia.2004.836173

Google Scholar

[4] G. J. Atkinson, B. C. Mecrow, A. G. Jack, D. J. Atkinson, et al., The analysis of losses in high-power fault-tolerant machines for aerospace applications, IEEE Trans. Ind. Appl., vol. 42, no. 5, p.1162–1170, Sep. /Oct. (2006).

DOI: 10.1109/tia.2006.880869

Google Scholar

[5] E. D. Ganev, High-performance electric drives for aerospace more electric architectures Part I—Electric Machines, Proc. IEEE Power Eng. Soc. Gen. Meeting, p.1–8, (2007).

DOI: 10.1109/pes.2007.385463

Google Scholar

[6] T. M. Jahns, and R. C. Van Nocker, High-Performance EHA Controls Using an Interior Permanent Magnet Motor, IEEE Trans. Aero. Electro. Syst., vol. 26, no. 3, May (1990).

DOI: 10.1109/7.106132

Google Scholar

[7] Yang Lin, Yang Shi, and Richard Burton, Modeling and Robust Discrete-Time Sliding-Mode Control Design for a Fluid Power Electrohydraulic Actuator (EHA) System, IEEE Trans. Mech., vol. 18, no. 1, Feb. (2013).

DOI: 10.1109/tmech.2011.2160959

Google Scholar

[8] Wenping Cao, Barrie C. Mecrow, Glynn J. Atkinson, John W. Bennett, and David J. Atkinson, Overview of Electric Motor Technologies Used for More Electric Aircraft (MEA), IEEE Trans. Ind. Electro., vol. 59, no. 9, pp.3523-3531, Sept. (2012).

DOI: 10.1109/tie.2011.2165453

Google Scholar

[9] P. Mellor, D. Roberts, and D. Turner, Lumped parameter thermal model for electrical machines of TEFC design, Elec. Power. Appl., IEE Proc. B, vol. 138, no. 5, pp.205-218, Sept. (1991).

DOI: 10.1049/ip-b.1991.0025

Google Scholar

[10] G. Airoldi, G. L. Ingram, K. Mahkamov, J. R. Bumby, et al, Computations on Heat Transfer in Axial Flux Permanent magnet machines, Proc. of 18th Int. Conf. on Electrical Machines (ICEM 2008), Sept. 2008, pp.1-6.

DOI: 10.1109/icelmach.2008.4799857

Google Scholar

[11] Trigeol, J. -F., Bertin, Y. and Lagnonotte, P., Coupling control volume modeling in fluid and lumped thermal model – Application to an induction machine, Proc. 32nd Ann. Conf. on Industrial Electronics (IECON 2006), Nov. 2006, pp.4829-4834.

DOI: 10.1109/iecon.2006.347438

Google Scholar

[12] Trigeol, J. -F., Bertin, Y. and Lagnonotte, P., Thermal Modeling of an Induction Machine Through the Association of Two Numerical Approaches, IEEE Trans. Energy Convers., vol. 21, no. 2, pp.314-323, Jun. (2006).

DOI: 10.1109/tec.2005.859964

Google Scholar

[13] P. Wheeler, L. Empringham , A. M, L. de Lillo, J. Clare, K. J. Bradley, C. Whitley, and G. To wers, A matrix converter motor dr ive for an aircraft actu ation sys t em, EPE Conference Record, (2003).

Google Scholar

[14] E. Bilgen and R. Boulos, Functional dependence of torque coefficientof coaxial cylinders gap width and Reynolds numbers, Trans. ASME, J. Fluids Eng. , vol. 95, no. 1, p.122–126, Mar. (1973).

DOI: 10.1115/1.3446944

Google Scholar

[15] David A. Howey, Peter R. N. Childs, and Andrew S. Holmes, Air-Gap Convection in Rotating Electrical Machines, IEEE Trans. Ind. Electro., vol. 59, no. 3, pp.1367-1375, Mar. (2012).

DOI: 10.1109/tie.2010.2100337

Google Scholar