A New Class of Biased Estimate

Article Preview

Abstract:

In this paper, the GM estimation is integrated with ridge estimation, principal component estimation and LIU estimation, resulting in a new class of robust unbiased estimation, and given the appropriate method of calculating. The example shows that such a new biased estimate is not only resistant to the interference of design matrix multicollinearity, but also withstands the adverse effects of outliers and high leverage points. They are really better than the LS estimation, unbiased estimation, robust M estimation and robust M-type biased estimation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1296-1304

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gruber, M.H.J., Improving Efficiency by Shrinkage: The James Stein and Ridge Regression Estimators. Marcel Dekker, Inc.: New York, (1998).

DOI: 10.1201/9780203751220

Google Scholar

[2] Hoer, A. E., and Kennard, R. W., Ridge Regression: Biased Estimation for Non-orthogonal Problems, Techno metrics, 12, pp.55-67, 1970a.

Google Scholar

[3] Hoer, A. E., and Kennard, R. W., Ridge Regression: Applications to Non-orthogonal Problems, Techno metrics, 12, pp.69-82, 1970b.

Google Scholar

[4] Massy, W.F., Principal components regression in exploratory statistical research., JASA, 60, pp.234-266, (1965).

Google Scholar

[5] Liu, K, A new class of biased estimate in linear regression., Communications in Statistics – Theory and Methods, 22 (2), p.393–402, (1993).

DOI: 10.1080/03610929308831027

Google Scholar

[6] Huber, P. J., Robust Covariances, Statistical Decision Theory and Related Topics, Vol. 2, eds. Gupta and Moore, Academic Press: New York, pp.165-191, (1977).

DOI: 10.1016/b978-0-12-307560-4.50013-2

Google Scholar

[7] ] Huber, P. J., Robust Statistics, Wiley: New York, (1981).

Google Scholar

[8] Hampel, F. R., Robust Estimation: A Condensed Partial Survey, Zeitschrift für Wahrscheinlichkeitsthiorie und Verwandte Gebiete, 27, pp.87-104, (1973).

DOI: 10.1007/bf00536619

Google Scholar

[9] Maronna, R. A., Robust M-estimators of Multivariate Location and Scatter, Annals of Statistics, 4, pp.51-67. (1976).

DOI: 10.1214/aos/1176343347

Google Scholar

[10] Holland, P. W., Weighted Ridge Regression: Combining Ridge and Robust Regression Methods, NBER Working Paper Series, Working Paper #11, pp.1-19, (1973).

DOI: 10.3386/w0011

Google Scholar

[11] Pariente, S., and Welsch, R. E., Ridge and Robust Regression Using Parametric Linear Programming, Working Paper, MIT, Alfred P. Sloan School of Management, (1977).

Google Scholar

[12] Askin, R. G., and Montgomery, D. C., Augmented Robust Estimators, Technometrics, 22, pp.333-341, (1980).

DOI: 10.2307/1268317

Google Scholar

[13] Pfaffenberger, R. C., and Dielman, T. E., A Comparison of Robust Ridge Estimators, Business Economics Section Proceedings of the American Statistical Association, pp.631-635, (1985).

Google Scholar

[14] Slivapulle, M.J., Robust Ridge Regression Based on an M-Estimator, aus ral.J. statist. 33(3), pp.319-333, (1991).

Google Scholar

[15] Gui, Q. M., Duan, Q.T., Zhou, Q.Y., and Guo, J.F., A New Class of Biased Linear Estimators in Deficient-rank Linear Models, Chinese quarterly Journal of Mathematics, 16(1), pp.71-78, (2001).

Google Scholar

[16] Xia Jie-lai., A Kind of New Biased Estimator of Regression Parameters: Root Root Estimator, Chinese J. Math. Statist. And Appl. Prob, 3, pp.21-30, (1988).

Google Scholar

[17] Nyquist H., Ridge Type M-estimators,. Linear Statistical Inference, T. Calinski and W. Klonecki, eds., Springer, Berlin. pp.246-258, (1985).

DOI: 10.1007/978-1-4615-7353-1_20

Google Scholar

[18] Olcay Arslan and Nedret Billor., Robust Liu estimator for regression based on an M-estimator. Journal of Applied Statistics, Vol. 27, pp.1-25, (2000).

DOI: 10.1080/02664760021817

Google Scholar

[19] Hampel F R, Ronchetti, E.M., Rousseeuw, P.J., and Stahel, W. A., Robust Statistics: The Approach Based on Influence Function. New York: John Wiley, (1986).

DOI: 10.1002/9781118186435

Google Scholar

[20] Rousseeuw, P. J., and van Zomeren, B. C., Unmasking Multivariate Outliers and Leverage Points, Journal of the American Statistical Association, 85, pp.633-651, (1990).

DOI: 10.1080/01621459.1990.10474920

Google Scholar

[21] Olcay Arslan and Nedret Billor., Roust Ridge Regression Estimation Biased on the GM-estimators, Jour of Math & Comp. Sci, pp.1-9, (1996).

Google Scholar

[22] Simpson. J. R. and Montgomeryd.D. C., A biased-robust regression technique for the combined outlier-multicollinearity problem, Journal of statistical computation and simulation, 56(1), pp.1-25, (1996).

DOI: 10.1080/00949659608811777

Google Scholar