Starting Performance of Linear Flux-Switching Permanent Magnet Machine Applied in Marine Direct Drive for Electric Propulsion Applications

Article Preview

Abstract:

A double-sided linear flux-switching permanent magnet machine applied in marine rudder direct drive applications is presented. The starting performances of the machine are calculated by finite element method. The simulation results of the proposed DLFSPM are verified by the experiment. The results have verified that the machine is suitability marine rudder direct drive applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

287-292

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Bianchi, N; Bolognani, S; Cappello, ADF, Reduction of cogging force in PM linear motors by pole-shifting, IEEE Proceedings-Electric Power Application. 152(3), 703-709. MAY (2005).

DOI: 10.1049/ip-epa:20045082

Google Scholar

[2] F. J. Lin, P. H. Shen, S. L. Yang, and P. H. Chou, Recurrent radial basisfunction network-based fuzzy neural network control for permanent magnet linear synchronous motor servo drive, IEEE Trans. Magn, vol. 42, no. 11, p.3694–3705, Nov. (2006).

DOI: 10.1109/tmag.2006.880995

Google Scholar

[3] E. Hoang, A. H. Ben-Ahmed, and J. Lucidarme, Switching flux permanent magnet polyphased synchronous machines, in Proc. 7th Eur. Conf. Power Electronics and Applications, vol. 3, 1997, p.903–908.

Google Scholar

[4] Fei, Weizhong; Luk, Patrick Chi Kwong; Shen, Jianxin, Torque Analysis of Permanent-Magnet Flux Switching Machines With Rotor Step Skewing, IEEE Transactions on Magnetics, vol. 48, pp.2664-2673, OCT (2012).

DOI: 10.1109/tmag.2012.2198223

Google Scholar

[5] Zhou, S. G., Yu, H. T., Hu, M. Q., Jiang, C. X., & Huang, Lei. Reduction of Cogging Force in a Linear Flux-Switching Permanent-Magnet Brushless AC Machine for Direct-Drive Applications,. IEEE Transactions on Magnetics, 47(10), 3252-3255. OCT (2011).

DOI: 10.1109/tmag.2011.2151275

Google Scholar

[6] N. Bianchi, S. Bolognani, Design Techniques for Reducing the Cogging Torque in Surface-Mounted PM Motors, IEEE Trans. Magn, vol. 38, no. 5, pp.1259-1265, (2002).

DOI: 10.1109/tia.2002.802989

Google Scholar

[7] S. Youn, J. Lee, H. Yoon, C. Koh, A New Cogging-Free Permanent-Magnet Linear Motor, IEEE Trans. Magn, vol. 44, no. 7, pp.1785-1790, (2008).

DOI: 10.1109/tmag.2008.918921

Google Scholar

[8] C. F. Wang, J. X. Shen, Y. Wang, L. L. Wang, and M. J. Jin, A new method for reduction of detent force in permanent magnet flux-switching linear motors, IEEE Trans. Magn, vol. 45, no. 6, p.2843–2846, Jun. (2009).

DOI: 10.1109/tmag.2009.2018689

Google Scholar

[9] Xu, Wei; Zhu, Jianguo; Zhang, Yongchang, New Axial Laminated-Structure Flux-Switching Permanent Magnet Machine With 6/7 Poles, IEEE Trans. Magnetics, vol. 47, no. 10, pp.2823-2826, OCT (2011).

DOI: 10.1109/tmag.2011.2151842

Google Scholar

[10] Z. Q. Zhu, Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, and A. Pride, IEEE Trans. Magn., vol. 41, no. 11, p.4277–4287, Nov. (2005).

DOI: 10.1109/tmag.2005.854441

Google Scholar

[11] W. Hua, M. Cheng, Z. Q. Zhu, and D. Howe, IEEE Trans. Ener. Conv, vol. 23, no. 3, p.727–733, (2008).

Google Scholar

[12] J. T. Chen, Z. Q. Zhu, and D. Howe, IEEE Trans. Magn., vol. 44, no. 12, p.4659–4667, Dec. (2008).

Google Scholar

[13] Z. Q. Zhu, X. Chen, J. T. Chen, D. Howe, and J. S. Dai, ICEMS, p.2948–2953, (2008).

Google Scholar

[14] M. J. Jin, C. F. Wang, J. X. Shen, and B. Xia, IEEE Trans. Magn., vol. 45, no. 8, p.3179–3186, Aug. (2009).

Google Scholar