Design and Analysis of a New Linear Fault-Tolerant Flux-Reversal Permanent-Magnet Machine

Article Preview

Abstract:

This paper proposes a new linear fault-tolerant flux-reversal permanent-magnet machine for urban rail transit. The key of the proposed machine is that the magnetizer divides the short mover into two modules. As a result, the two modules of the short mover have the complementary magnetic circuit, and the detent force of the proposed machine is reduced. Also, it possesses more symmetrical and sinusoidal back electromotive force (back-EMF). In addition, the mutual inductances of the propose machine are much lower than the self-inductances, hence offering fault-tolerant capability. The finite-element results confirm the validity of the proposed machine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Cheng, W. Hua, J. Zhang, and W. Zhao, Overview of Stator-Permanent Magnet Brushless Machines, IEEE Transaction on Magnetics, vol. 586, no. 11, pp.5087-5101, Nov. (2011).

DOI: 10.1109/tie.2011.2123853

Google Scholar

[2] X. Zhu, L. Quan, D. Chen, M. Cheng, W. Hua, and X. Sun, Electromagnetic Performance Analysis of a New Stator-Permanent-Magnet Doubly Salient Flux Memory Motor Using a Piecewise-Linear Hysteresis Model, IEEE Transaction on Magnetics, vol. 47, no. 5, pp.1106-1109, May. (2011).

DOI: 10.1109/tmag.2010.2072986

Google Scholar

[3] R. Cao, C. Mi, and M. Cheng, Quantitative Comparison of Flux-Switching Permanent-Magnet Motors With Interior Permanent Magnet Motor for EV, HEV, and PHEV Applications, IEEE Transaction on Magnetics, vol. 48, no. 8, pp.2374-2384, Aug. (2012).

DOI: 10.1109/tmag.2012.2190614

Google Scholar

[4] W. Zhao, M. Cheng, J. Ji, R. Cao, Y. Du, and H. Li, Design and Analysis of A New Fault-Tolerant Linear Permanent-Magnet Motor for Maglev Transportation Applications, IEEE Transaction on Applied Superconductivity, vol. 22, no. 3, 5200204, Jun. (2012).

DOI: 10.1109/tasc.2012.2185209

Google Scholar

[5] S. -U. Chung, H. -J. Lee, and S. -M. Hwang, A Novel Design of Linear Synchronous Motor Using FRM Topology, IEEE Transaction on Magnetics, vol. 44, no. 6, pp.1514-1517, Jun. (2008).

DOI: 10.1109/tmag.2007.915104

Google Scholar

[6] I. -S. Jung, J. Hur, and D. -S. Hyun, Performance Analysis of Skewed PM Linear Synchronous Motor According to Various Design Parameters, IEEE Transaction on Magnetics, vol. 37, no. 5, pp.3653-3657, Sep. (2001).

DOI: 10.1109/20.952683

Google Scholar

[7] W. Zhao, M. Cheng, W. Hua, H. Jia, and R. Cao, Back-EMF Harmonic Analysis and Fault-Tolerant Control of Flux-Switching Permanent-Magnet Machine With Redundancy, IEEE Transaction on Industrial Electronics, vol. 58, no. 5, pp.1926-1935, May. (2011).

DOI: 10.1109/tie.2010.2050758

Google Scholar

[8] W. Zhao, M. Cheng, K. T. Chau, and C. C. Chan, Control and Operation of Fault-Tolerant Flux-Switching Permanent-Magnet Motor Drive With Second Harmonic Current Injection, IET Electric Power Applications, vol. 6, no. 9, pp.707-715, Nov. (2012).

DOI: 10.1049/iet-epa.2011.0144

Google Scholar

[9] W. Zhao, M. Cheng, R. Cao, and J. Ji, Experimental Comparison of Remedial Single-Channel Operations for Redundant Flux-Switching Permanent-Magnet Motor Drive, Progress in Electromagnetics Research, vol. 123, pp.189-204, (2012).

DOI: 10.2528/pier11110405

Google Scholar

[10] W. Zhao, M. Cheng, K. T. Chau, J. Ji, and R. Cao, Remedial Injected Harmonic Current Operation of Redundant Flux-Switching Permanent Magnet Motor Drives, IEEE Transaction on Industrial Electronics, vol. 60, no. 1, pp.151-159, Jan. (2013).

DOI: 10.1109/tie.2012.2186107

Google Scholar

[11] W. Min, J. T. Chen, Z. Q. Zhu, M. Zhang, and G. H. Duan, Optimization and Comparison of Novel E-Core and C-Core Linear Switched Flux PM Machines, IEEE Transaction on Magnetics, vol. 47, no. 8, pp.2134-2141, Aug. (2011).

DOI: 10.1109/tmag.2011.2125977

Google Scholar

[12] Y. Du, K. T. Chau, M. Cheng, and et al, Design and Analysis of Linear Stator Permanent Magnet Vernier Machines, IEEE Transaction on Magnetics, vol. 47, no. 10, pp.4219-4222, Oct. (2011).

DOI: 10.1109/tmag.2011.2156392

Google Scholar

[13] J. Ji, W. Zhao, G. Liu, and et al, High Reliability Linear Drive Device for Artificial Hearts, Journal of Applied Physics, vol. 111, no. 7, p. 07E729, Apr. (2012).

DOI: 10.1063/1.3678302

Google Scholar

[14] J. Ji, S. Yan, W. Zhao, G. Liu, X. Zhu, Minimization of Cogging Force in a Novel Linear Permanent-Magnet Motor for Artificial Hearts. IEEE Transaction on Magnetics, DOI: 10. 1109/TMAG. 2013. 2247028.

DOI: 10.1109/tmag.2013.2247028

Google Scholar

[15] R. Cao, M. Cheng, W. Hua, Investigation and General Design Principle of a New Series of Complementary and Modular Linear FSPM Motors, IEEE Transaction on Industrial Electronics, DOI: 10. 1109/TIE. 2012. 2230605.

DOI: 10.1109/tie.2012.2230605

Google Scholar