[1]
N. Popplewell and D. Chang: Free vibrations of a complex Euler-Bernoulli beam. Journal of sound and vibration, 190 (1996), pp.852-856.
DOI: 10.1006/jsvi.1996.0098
Google Scholar
[2]
S. Naguleswaran: Natural frequencies, sensitivity and mode shape details of an Euler-Bernoulli beam with one-step change in cross-section and with ends on classical supports. Journal of sound and vibration, 252(2002), pp.751-767.
DOI: 10.1006/jsvi.2001.3743
Google Scholar
[3]
H. P. Lin and S. Chang: Free vibration analysis of multi-span beams with intermediate flexible constraints. Journal of sound and vibration, 281(2005), pp.155-169.
DOI: 10.1016/j.jsv.2004.01.010
Google Scholar
[4]
Q. Mao and S. Pietrzko: Free vibration analysis of stepped beams by using Adomian decomposition method. Applied Mathematics and Computation, 217(2010), pp.3429-3441.
DOI: 10.1016/j.amc.2010.09.010
Google Scholar
[5]
N. Auciello, A. Erolano: Exact solution for the transverse vibration of a beam a part of which is a taper beam and other part is a uniform beam. International journal of solids and structures, 34(1997), pp.2115-2129.
DOI: 10.1016/s0020-7683(96)00136-9
Google Scholar
[6]
N. Auciello: On the transverse vibrations of non-uniform beams with axial loads and elastically restrained ends. International journal of mechanical sciences, 43(2001), pp.193-208.
DOI: 10.1016/s0020-7403(99)00110-1
Google Scholar
[7]
B. Yany: Exact transient vibration of stepped bars, shafts and strings carrying lumped masses. Journal of sound and vibration, 329(2010), pp.1191-207.
DOI: 10.1016/j.jsv.2009.10.035
Google Scholar
[8]
J. H. Zhou: Differential Transformation and its Application for Electric Circuits. China: Huazhong University Press, (1986) (in chinese).
Google Scholar
[9]
C. Bert and H. Zeng: Analysis of axial vibration of compound bars by differential transformation method. Journal of sound and vibration, 275(2004), pp.641-647.
DOI: 10.1016/j.jsv.2003.06.019
Google Scholar
[10]
B. BEDDOE: Wave theory of free torsional vibration of composite systems of shafts. Journal of mechanical engineering science, 7(1965), pp.48-56.
DOI: 10.1243/jmes_jour_1965_007_010_02
Google Scholar
[11]
M. Malik and M. Allali: Characteristic Equations of Rectangular Plates by Differential Transformation. Journal of sound and vibration, 233(2000), pp.359-366.
DOI: 10.1006/jsvi.2000.2828
Google Scholar
[12]
A. Leissa: The free vibration of rectangular plates. Journal of sound and vibration, 31(1973), pp.257-293.
DOI: 10.1016/s0022-460x(73)80371-2
Google Scholar
[13]
S. H. Ho and C. K. Chen: Free transverse vibration of an axially loaded non-uniform spinning twisted Timoshenko beam using differential transform. International journal of mechanical sciences, 48(2006), pp.1323-1331.
DOI: 10.1016/j.ijmecsci.2006.05.002
Google Scholar
[14]
S. S. Rao: Mechanical vibrations. Pearson Education, (2003).
Google Scholar
[15]
Z. F. Fu and H. X. Hua: Modal Analysis Theory and Application. China: Shanghai Jiaotong University Press, (2000) (in chinese).
Google Scholar
[16]
S. H. Ho and C. K. Chen: Analysis of general elastically end restrained non-uniform beams using differential transform . Applied Mathematical Modelling, 22(1998), pp.219-234.
DOI: 10.1016/s0307-904x(98)10002-1
Google Scholar