[1]
J.P. Boris, F.F. Grinstein, E.S. Oran, R.L. Kolbe, New insights into large eddy simulation, Fluid Dyn. Res. 10 (1992) 199.
DOI: 10.1016/0169-5983(92)90023-p
Google Scholar
[2]
Xiaogang Deng, Yi Jiang, Meiliang Mao, Huayong Liu, Guohua Tu, Developing Hybrid cell-edge and cell-node Dissipative Compact Scheme for Complex Geometry Flows, 10-14 October 2012, The Ninth Asian Computational Fluid Dynamics Conference (Invited).
DOI: 10.1007/s11431-013-5339-6
Google Scholar
[3]
X.G. Deng, M.L. Mao, G.H. Tu and H.X. Zhang, Geometric Conservation Law and Applications to High-Order Finite Difference Schemes with Stationary Grids, J. Comput. Phys. 230 (2011) 1100–1115.
DOI: 10.1016/j.jcp.2010.10.028
Google Scholar
[4]
John M. Hsu and Antony Jameson, An Implicit-Explicit Hybrid Scheme for Calculating Complex Unsteady Flows, AIAA 2002-0714.
DOI: 10.2514/6.2002-714
Google Scholar
[5]
Gordnier RE, Visbal MR, Numerical simulation of delta-wing roll, AIAA Paper 93-0554, January (1993).
DOI: 10.2514/6.1993-554
Google Scholar
[6]
Daniel J. Bodony, Analysis of sponge zones for computational fluid mechanics, J. Comput. Phys. 212 (2006) 681-702.
DOI: 10.1016/j.jcp.2005.07.014
Google Scholar
[7]
Xiaogang Deng, Yaobing Min, Meiliang Mao, Huayong Liu, Guohua Tu, Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids, J. Comput. Phys 239 (2013) 90–111.
DOI: 10.1016/j.jcp.2012.12.002
Google Scholar
[8]
R.M. Visbal, D.V. Gaitonde, On the Use of higher-order finite-difference schemes on curvilinear and deforming meshes, J. Comput. Phys. 181 (2002) 155-185.
DOI: 10.1006/jcph.2002.7117
Google Scholar
[9]
T. Nonomura, N. Iizuka, K. Fujii, Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids, Computers and Fluids 39 (2010) 197-214.
DOI: 10.1016/j.compfluid.2009.08.005
Google Scholar
[10]
Kravchenko, A. G., and Moin, P., B-Spline Methods and Zonal Grids for Numerical Simulations of Turbulent Flows, Flow Physics and Computation Division, Department of Mechanical Engineering, Stanford University, Report No. TF-73, Stanford, CA, Feb. (1998).
Google Scholar
[11]
K. Fujii, Progress and future prospects of CFD in aerospace — Wind tunnel and beyond, Progress in Aerospace Sciences, 41(2005) 455–470.
DOI: 10.1016/j.paerosci.2005.09.001
Google Scholar
[12]
Wang Z J. High-order methods for the Euler and Navier-Stokes equations on unstructured grids. Progress in Aerospace Sciences 43 (2007) 1-41.
DOI: 10.1016/j.paerosci.2007.05.001
Google Scholar
[13]
D.P. Rizzetta, M.R. Visbal, G.A. Blaisdell, A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation, Int. J. Numer. Meth. Fluids 42 (2003) 665–693.
DOI: 10.1002/fld.551
Google Scholar
[14]
Yiqing Shen, Gecheng Zha, Large eddy simulation using a new set of sixth order schemes for compressible viscous terms, Journal of Computational Physics 229 (2010) 8296–8312.
DOI: 10.1016/j.jcp.2010.07.017
Google Scholar
[15]
Peng Xie, Chaoqun Liu, Weighted compact and non-compact scheme for shock tube and shock entropy interaction, AIAA 2007-509.
DOI: 10.2514/6.2007-509
Google Scholar