Preparation and Properties of Poly(lactic Acid) Fiber Reinforced PHBV Composite

Article Preview

Abstract:

Purposes: This study is to improve the mechanical properties and machinability performance of PHBV. Procedures: PLA/PHBV composites were prepared by dry blend in the melt mixing. The contents of PLA fiber in PHBV matrix are 0, 1, 3, 5, 8 and 10 wt. %. Methods: PLA/PHBV composites were subjected to mechanical property, thermal and morphology evaluation. Results: The results showed the immiscibility of PLA fiber and PHBV matrix. The excellent mechanical properties of the composite (the content of PLA fiber is 8 wt. %) were higher than those of neat PHBV. The micrograph of the fracture surfaces showed that the addition of PLA fiber evidently improved the toughness of PLA/PHBV blends and showed a broad spectrum of PLA fiber diameter (about 200 nm). Conclusions: The improvements were due to the efficient of the PLA fiber as the reinforcement. And the blends showed a significant ductile plastic deformation. The PLA/PHBV blends can be used for a wide range of multifunctional biomedical materials such as the internal fixation of fracture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-113

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Tao, C. J. Song, M. F. Cao, D. Hu, L. Liu, N. Liu and S. F. Wang: Polym. Degrad. Stab. Vol. 94 (2009), pp.575-583.

Google Scholar

[2] S. Wang, P. M. Ma, R. Y. Wang, S. F. Wang, Y. Zhan and Y. X. Zhang: Polym. Degrad. Stab. Vol. 7 (2008), pp.1364-1369.

Google Scholar

[3] T. Gerard and T. Budtova: Eur. Polym. J. Vol. 6(2012), pp.1110-1117.

Google Scholar

[4] M. C. Kim and T. Masuoka: React. Funct. Polym. Vol. 5(2009), pp.287-292.

Google Scholar

[5] J. Li, M. F. Lai and J. J. Liu: J. Appl. Polym. Sci. Vol. 98(2005), pp.1427-1436.

Google Scholar

[6] H. Brandi, R. Bachofen, J. Mayer and E. Wintermantel: Can. J. Microbiol. Vol. 41(1995), pp.143-153.

Google Scholar

[7] F. P. Delafield, M. Doudoroff, N. J. Palleroni, C. J. Lusty and R. Contopoulos: J. Bacteriol. Vol. 5(1965), pp.1455-1466.

DOI: 10.1128/jb.90.5.1455-1466.1965

Google Scholar

[8] C. R. Hankermeyer and R. S. Tjeerdema: Rev. Environ. Contam. Toxicol. Vol. 159(1999), pp.1-24.

Google Scholar

[9] A. P. Gupta and V. Kumar: Eur. Polym. J. Vol. 43(2007), pp.4053-4074.

Google Scholar

[10] W. H. Carothers, G. L. Dorough and F. J. van Natta: J. Am. Chem. Soc. Vol. 54(1932), pp.761-772.

Google Scholar

[11] Y. Gao, L. J. Kong, L. Zhang, Y. D. Gong, G. Q. Chen, N. M. Zhao and X. F. Zhang: Eur. Polym. J. Vol. 42(2006), pp.764-775.

Google Scholar

[12] X. L. Lu, F. G. Du, X. C. Ge, M. Xiao and Y. Z. Meng: J. Biomed. Mater. Res. A Vol. 4(2006), pp.653-658.

Google Scholar

[13] X. C. Ge, Q. Zhu and Y.Z. Meng: J. Appl. Polym. Sci. Vol. 3(2006), pp.782-787.

Google Scholar

[14] Q. S. Liu, M. F. Zhu, W. H. Wu and Z. Y. Qin: Polym. Degrad. Stab. Vol. 94(2009), pp.18-24.

Google Scholar