Study on Microstructure and Tensile Properties of New Cu-Al Bi-Metal Tubes Versus Pure Copper Tubes

Article Preview

Abstract:

In recent years, heating, ventilation and air condition (HVAC) industries have attempted to find alternative materials such as aluminum for replacing copper metal because of a light weight metal with relatively lower market price compared to copper. This study characterizes microstructure and tensile properties of new Cu-Al bi-metal tubes (aluminum cladded copper (ACC) and copper cladded aluminum (CCA)) versus copper phosphorous alloy tube in order to estimate the possibility of implementing the composite tubes in heating, ventilation, and air conditioning industries. The result shows that Cu phosphorus alloy tubes has the highest tensile properties followed by CCA and ACC bi-metal tubes and different tube size does not affect the tensile properties of tube of the same type.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-166

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.B. Karamış, A. Taşdemirci, F. Nair, Microstructural analysis and discontinuities in the brazed zone of copper tubes, Journal of Materials Processing Technology, 141 (2003) 302-312.

DOI: 10.1016/s0924-0136(03)00281-4

Google Scholar

[2] J.R. davis, Copper and Copper alloys, First ed., ASM international, Ohio, (2001).

Google Scholar

[3] S. Baragetti, A. Terranova, M. Vimercati, Friction behaviour evaluation in beryllium–copper threaded connections, International Journal of Mechanical Sciences, 51 (2009) 790-796.

DOI: 10.1016/j.ijmecsci.2009.09.004

Google Scholar

[4] W.D. Callister, D.G. Rethwisch, Fundamentals of Materials Science and Engineering, An Integrated Approach, Third ed., John Wiley & Sons Inc., Hoboken, (2008).

Google Scholar

[5] E.P. Bandarra Filho, J.M. Saiz Jabardo, Convective boiling performance of refrigerant R-134a in herringbone and microfin copper tubes, International Journal of Refrigeration, 29 (2006) 81-91.

DOI: 10.1016/j.ijrefrig.2005.05.011

Google Scholar

[6] Rex Miller, M.R. Miller, Air Conditioning Home & Commercial, fifth edition ed., John Wiley & Sons Inc, Danvers, (2004).

Google Scholar

[7] Y. Tang, L. -s. Lu, D. Yuan, Q. -h. Wang, X. -l. Zhao, Experimental and FEM study on sinking of miniature inner grooved copper tube, Journal of Materials Processing Technology, 209 (2009) 5333-5340.

DOI: 10.1016/j.jmatprotec.2009.04.003

Google Scholar

[8] L. -s. Lu, Y. Tang, D. Yuan, D. -x. Deng, Groove deformation analysis of a single plough on inner copper tube, Journal of Materials Processing Technology, 211 (2011) 1669-1677.

DOI: 10.1016/j.jmatprotec.2011.05.007

Google Scholar

[9] L. Chamra, R. Webb, M. Randlett, Advanced micro-fin tubes for condensation, International journal of heat and mass transfer, 39 (1996) 1839-1846.

DOI: 10.1016/0017-9310(95)00275-8

Google Scholar

[10] K. Yamamoto, T. Hashizume, H. Kawaguchi, Method of manufacturing a heat transfer small size tube, in, US Patent: US 5, 555, 622, (1996).

Google Scholar

[11] G. -L. Zhang, S. -H. Zhang, B. Li, H. -Q. Zhang, Analysis on folding defects of inner grooved copper tubes during ball spin forming, Journal of Materials Processing Technology, 184 (2007) 393-400.

DOI: 10.1016/j.jmatprotec.2006.12.016

Google Scholar

[12] J.C. Passos, V.F. Kuser, P. Haberschill, M. Lallemand, Convective boiling of R-407c inside horizontal microfin and plain tubes, Experimental thermal and fluid science, 27 (2003) 705-713.

DOI: 10.1016/s0894-1777(02)00308-4

Google Scholar

[13] Y.J. Kim, J.M. Cho, M.S. Kim, Experimental study on the evaporative heat transfer and pressure drop of CO2 flowing upward in vertical smooth and micro-fin tubes with the diameter of 5mm, International Journal of Refrigeration, 31 (2008) 771-779.

DOI: 10.1016/j.ijrefrig.2007.12.001

Google Scholar

[14] A. Khosravifard, R. Ebrahimi, Investigation of parameters affecting interface strength in Al/Cu clad bimetal rod extrusion process, Materials & Design, 31 (2010) 493-499.

DOI: 10.1016/j.matdes.2009.06.026

Google Scholar

[15] N. Ahmed, Extrusion of copper clad aluminum wire, Journal of Mechanical Working Technology, 2 (1978) 19-32.

DOI: 10.1016/0378-3804(78)90012-8

Google Scholar

[16] C.G. Kang, Y.J. Jung, H.C. Kwon, Finite element simulation of die design for hot extrusion process of Al/Cu clad composite and its experimental investigation, Journal of Materials Processing Technology, 124 (2002) 49-56.

DOI: 10.1016/s0924-0136(02)00106-1

Google Scholar

[17] K.Y. Rhee, W.Y. Han, H.J. Park, S.S. Kim, Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics, Materials Science and Engineering: A, 384 (2004) 70-76.

DOI: 10.1016/j.msea.2004.05.051

Google Scholar

[18] Lamet, Hubert I., John K., N.R., S.M. Allen, Metallography and microstructures Handbook, in: ASM handbook, ASM international, 1998, p.1627.

Google Scholar

[19] A. Habibi, M. Ketabchi, Enhanced properties of nano-grained pure copper by equal channel angular rolling and post-annealing, Materials & Design, 34 (2012) 483-487.

DOI: 10.1016/j.matdes.2011.07.029

Google Scholar

[20] Y.S. Li, N.R. Tao, K. Lu, Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures, Acta Mater., 56 (2008) 230-241.

DOI: 10.1016/j.actamat.2007.09.020

Google Scholar

[21] Z.B. Sajuri, Y. Miyashita, Y. Hosokai, Y. Mutoh, Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys, International Journal of Mechanical Sciences, 48 (2006) 198-209.

DOI: 10.1016/j.ijmecsci.2005.09.003

Google Scholar