Synthesis, Characterization and Mechanism of Benzamide Intercalated Kaolinite by Replacement Method

Article Preview

Abstract:

Kaolinite/benzamide complex was prepared by displacement reaction of a kaolinite/dimethylsulphoxide (DMSO) intercalation complex with melted benzamide. The whole process was recorded by powder X-ray diffractometry (PXRD) and Fourier-transformed infrared spectroscopy (FTIR). Those PXRD and FT-IR indicated that there are two stages in the process of melted benzamide replacing intercalation. The first stage is the deintercalation of DMSO molecules in the kaolinite/dimethylsulphoxide intercalation complex. And the second stage is the melted benzamide intercalation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

222-229

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.J. Pinnavaia, T. Lan and Z. Wang: Polym. Mater. Sci. Eng. Vol. 73 (1995), p.117.

Google Scholar

[2] P.C. Lee and L.W. Janng: J. Appl. Polym. Sci. Vol. 68 (1998) p. (1997).

Google Scholar

[3] A. Vaia, K.D. Jandt and E.J. Kramer: Macromolecular Vol. 28 (1995) p.8080.

Google Scholar

[4] L. Ratchana, S. Steven and F.G. Reter: Macromolecules Vol. 33 (2000) p.5227.

Google Scholar

[5] M. Alexandre and P. Dubois: Mater. Sci. Eng. Vol. 28 (2000) p.1.

Google Scholar

[6] P. Aranda and E. Ruiz-Hitzky: Chem. Mater. Vol. 4 (1992) p.1395.

Google Scholar

[7] Y. Kojima, A. Usuki and M. Kawasumi: J. Mate. Res. Vol. 8 (1993) p.1179.

Google Scholar

[8] K. Yano, A. Usuki and A. Okada: Polym. Chem. Vol. 31 (1993) p.2493.

Google Scholar

[9] S.R. Suprakas, M. Pralay and O. Masami: Macromolecules Vol. 35 (2002) p.3104.

Google Scholar

[10] E.P. Giannelis: Appl. Organometal. Chem. Vol. 12 (1998) p.675.

Google Scholar

[11] Makoto Sato: Clay Clay Minerals, Vol. 47 (1999) p.793.

Google Scholar

[12] Y. Sugahara, Satokawa S and Yoshioka K-I: Clay and Clay Minerals, Vol. 2 (1989) p.143.

Google Scholar

[13] Komori Y and Sugahara Y: J Mater Res. Vol. 13 (1989), p.930.

Google Scholar

[14] Komori Y and Yoshiyuki Sugahara,: Applied Clay Sci., Vol. 1-2 (1999) p.241.

Google Scholar

[15] S. Olejnik, A M Posner and J P Quirk: Clay Minerals, Vol. 8 (1970) p.421.

Google Scholar

[16] Ryoji Takenawa and Komori Y: Chem. Mater. Vol. 13 (2001) p.3741.

Google Scholar

[17] Jose Eduardo Gardolinski: J. Colloid Interface Sci. Vol. 221(2000) p.284.

Google Scholar

[18] R.A. Vaia and E.P. Giannelis: Macromolecules Vol. 30 (1997) p.8000.

Google Scholar

[19] R.A. Vaia, H. Ishii and E.P. Giannelis: Chem. Mater. Vol. 5 (1993) p.1694.

Google Scholar

[20] R.A. Vaia and K.D. Jandt: Macromolecules Vol. 28 (1995) p.8080.

Google Scholar

[21] R.A. Vaia, K.D. J, t, E.J. Kramer and E.P. Giannelis: Chem. Mater. Vol. 8 (1996) p.2628.

Google Scholar

[22] L.M. Liu, Z.N. Qi and X.G. Zhu: J. Appl. Polym. Sci. Vol. 71 (1999) p.1133.

Google Scholar

[23] Olejnik S, Aylmore L A G and Pasner A M: Phys Chem, Vol. 72 (1968): p.241.

Google Scholar

[24] Thempson J G and Cuff C: Clays Clay Miner, Vol. 33 (1985): p.490.

Google Scholar

[25] Clifford T J, Garrison S and David F B: PhysChem, Vol. 88 (1984) p.5959.

Google Scholar

[26] Hayashi S: Clays Clay Miner. Vol. 45 (1997) p.724.

Google Scholar

[27] Franco Fand and Ruiz Cruz M D: Clays clay Miner, Vol. 50 (2005) p.47.

Google Scholar

[28] Frost R. L Kristof J: Thermochimica Acta Vol. 327 (1999) p.155.

Google Scholar