Contribution to Multiaxial Damage Calculation Using FEM

Article Preview

Abstract:

The paper deals with chosen criterions designed for calculation of multiaxial cumulative fatigue damage. Algorithms are implemented into the programming language MATLAB. Necessary inputs for calculation of cumulative fatigue damage are usually stresses and strains. These data have obtained from FE analysis. Presented approaches have applied for damage prediction of the piston-rod of the car engine.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

318-324

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Nový, M. Činčala, P. Kopas, O. Bokůvka: Mechanisms of high-strength structural materials fatigue failure in ultra-wide life region. Materials Science and Engineering. ISSN 0921–5093, 2007, Vol. 462, p.189–192.

DOI: 10.1016/j.msea.2006.03.147

Google Scholar

[2] G. Nicoletto, O. Bokůvka, L. Collini, P. Kopas: Fatigue Resistance in the Very High-cycle Regime. Transaction of FAMENA. ISSN 1333–1124, 2005, Vol. 29, No. 1, p.9–16.

Google Scholar

[3] M. Balda, J. Svoboda, V. Fröhlich: Using hypotheses for calculating fatigue lives of parts exposed to combined random loads. In: Engineering mechanics. Svratka (2003), p.12–15.

Google Scholar

[4] A. Carpinteri, A. Spagnoli, S. Vantadori: A multiaxial fatigue criterion for random loading. Fatigue & Fracture of Engineering Materials & Structures. ISSN 1460-2695, 2003, Vol. 26, No. 6, pp.515-522.

DOI: 10.1046/j.1460-2695.2003.00620.x

Google Scholar

[5] J. Liu, J. Li, Z. P. Zhang: A three-parameter model for predicting fatigue life of ductile metals under constant amplitude multiaxial loading. Journal of Materials Engineering and Performance. ISSN 1059-9495, 2013, Vol. 22, No. 4, pp.1161-1169.

DOI: 10.1007/s11665-012-0197-0

Google Scholar

[6] V. Kompiš, F. Konkoľ, M. Vaško: Trefftz-polynomial reciprocity based FE formulation. In Computer Assisted Mechanics and Engineering Sciences. ISSN 1232–308X, 2001, Vol. 8, No. 2–3, p.385–395.

Google Scholar

[7] X. Pitoiset, A. Preumont, A. Kernilis: Tools for a Multiaxial Fatigue Analysis of Structures Submitted to Random Vibrations. Proceedings European Conference on Spacecraft Structures Materials and Mechanical Testing, Braunschweig, Germany, (1998).

DOI: 10.1046/j.1460-2695.2001.00394.x

Google Scholar

[8] M. Sága, J. Vavro: Contribution to Non-Proportional Multiaxial Fatigue Analysis by FEM. Materials Engineering. ISSN 1335-0803, 2004, Vol. 11, No. 1, pp.143-150.

Google Scholar

[9] M. De Freitas, L. Reis, B. Li: Evaluation of small crack growth models for notched specimen under axial/torsional fatigue loading. Facta universitatis, Mechanics, Automatic Control and Robotics. ISSN 0354-2009, 2003, Vol. 3, No 13, pp.657-669.

Google Scholar

[10] M. Sága: Optimising techniques for multiaxial fatigue analysis by FEM. Computational Mechanics, Nečtiny (2002), pp.403-408.

Google Scholar

[11] A. Sapietová, Dekýš, V.: A Design and Optimization of the Fully Automatic Shunting Mechanism. Advances in Mechanical Design, Springer Science & Business Media (2012), pp.421-427.

Google Scholar

[12] M. Žmindák, M. Dudinský: Computational Modelling of Composite Materials Reinforced by Glass Fibers. Procedia Engineering Vol. 48 (2012), pp.701-710.

DOI: 10.1016/j.proeng.2012.09.573

Google Scholar